These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 19968912)
1. Sampling strategies for whole genome association studies in aquaculture and outcrossing plant species. Hayes BJ; MacLeod IM; Baranski M Genet Res (Camb); 2009 Dec; 91(6):367-71. PubMed ID: 19968912 [TBL] [Abstract][Full Text] [Related]
2. Multilocus genomics of outcrossing plant populations. Hou W; Liu T; Li Y; Li Q; Li J; Das K; Berg A; Wu R Theor Popul Biol; 2009 Aug; 76(1):68-76. PubMed ID: 19426748 [TBL] [Abstract][Full Text] [Related]
3. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Lipka AE; Kandianis CB; Hudson ME; Yu J; Drnevich J; Bradbury PJ; Gore MA Curr Opin Plant Biol; 2015 Apr; 24():110-8. PubMed ID: 25795170 [TBL] [Abstract][Full Text] [Related]
4. Association genetics in crop improvement. Rafalski JA Curr Opin Plant Biol; 2010 Apr; 13(2):174-80. PubMed ID: 20089441 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Wu R; Ma CX; Painter I; Zeng ZB Theor Popul Biol; 2002 May; 61(3):349-63. PubMed ID: 12027621 [TBL] [Abstract][Full Text] [Related]
6. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes. Nielsen HM; Sonesson AK; Meuwissen TH J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937 [TBL] [Abstract][Full Text] [Related]
7. Controlling type 1 error rates in genome-wide association studies in plants. George AW Heredity (Edinb); 2013 Jul; 111(1):86-7. PubMed ID: 23188173 [No Abstract] [Full Text] [Related]
8. Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. Campbell NR; LaPatra SE; Overturf K; Towner R; Narum SR G3 (Bethesda); 2014 Oct; 4(12):2473-81. PubMed ID: 25354781 [TBL] [Abstract][Full Text] [Related]
9. Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms. MacLeod IM; Hayes BJ; Savin KW; Chamberlain AJ; McPartlan HC; Goddard ME J Anim Breed Genet; 2010 Apr; 127(2):133-42. PubMed ID: 20433522 [TBL] [Abstract][Full Text] [Related]
10. Response to 'controlling type 1 error rates in genome-wide association studies in plants' by Andrew W George. Müller BU; Stich B; Piepho HP Heredity (Edinb); 2013 Jul; 111(1):88. PubMed ID: 23321704 [No Abstract] [Full Text] [Related]
11. Genomic selection: genome-wide prediction in plant improvement. Desta ZA; Ortiz R Trends Plant Sci; 2014 Sep; 19(9):592-601. PubMed ID: 24970707 [TBL] [Abstract][Full Text] [Related]
12. The distribution of plant mating systems: study bias against obligately outcrossing species. Igic B; Kohn JR Evolution; 2006 May; 60(5):1098-103. PubMed ID: 16817548 [TBL] [Abstract][Full Text] [Related]
13. Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. Ikeda Y Plant Cell Physiol; 2012 May; 53(5):809-16. PubMed ID: 22492232 [TBL] [Abstract][Full Text] [Related]
14. Testing for genetic association in the presence of population stratification in genome-wide association studies. Wang K Genet Epidemiol; 2009 Nov; 33(7):637-45. PubMed ID: 19235185 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships. Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184 [TBL] [Abstract][Full Text] [Related]
16. From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Ogura T; Busch W Curr Opin Plant Biol; 2015 Feb; 23():98-108. PubMed ID: 25449733 [TBL] [Abstract][Full Text] [Related]
17. Metabolite-based genome-wide association studies in plants. Luo J Curr Opin Plant Biol; 2015 Apr; 24():31-8. PubMed ID: 25637954 [TBL] [Abstract][Full Text] [Related]
18. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585 [TBL] [Abstract][Full Text] [Related]
19. A role for nonadaptive processes in plant genome size evolution? Whitney KD; Baack EJ; Hamrick JL; Godt MJ; Barringer BC; Bennett MD; Eckert CG; Goodwillie C; Kalisz S; Leitch IJ; Ross-Ibarra J Evolution; 2010 Jul; 64(7):2097-109. PubMed ID: 20148953 [TBL] [Abstract][Full Text] [Related]
20. From genome to phenome: genome-wide association studies and other approaches that bridge the genotype to phenotype gap. Fernie AR; Gutierrez-Marcos J Plant J; 2019 Jan; 97(1):5-7. PubMed ID: 30636100 [No Abstract] [Full Text] [Related] [Next] [New Search]