BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19968994)

  • 1. Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all?
    Korený L; Lukes J; Oborník M
    Int J Parasitol; 2010 Feb; 40(2):149-56. PubMed ID: 19968994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution and diversity of kinetoplastid flagellates.
    Simpson AG; Stevens JR; Lukes J
    Trends Parasitol; 2006 Apr; 22(4):168-74. PubMed ID: 16504583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of parasitism in kinetoplastid flagellates.
    Lukeš J; Skalický T; Týč J; Votýpka J; Yurchenko V
    Mol Biochem Parasitol; 2014 Jul; 195(2):115-22. PubMed ID: 24893339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids.
    Deschamps P; Lara E; Marande W; López-García P; Ekelund F; Moreira D
    Mol Biol Evol; 2011 Jan; 28(1):53-8. PubMed ID: 21030427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups.
    Makiuchi T; Nara T; Annoura T; Hashimoto T; Aoki T
    Gene; 2007 Jun; 394(1-2):78-86. PubMed ID: 17383832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme pathway evolution in kinetoplastid protists.
    Cenci U; Moog D; Curtis BA; Tanifuji G; Eme L; Lukeš J; Archibald JM
    BMC Evol Biol; 2016 May; 16(1):109. PubMed ID: 27193376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes.
    Stevens JR
    Parasite; 2008 Sep; 15(3):226-32. PubMed ID: 18814685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): loss of the haem-synthesis pathway.
    Silva FM; Kostygov AY; Spodareva VV; Butenko A; Tossou R; Lukeš J; Yurchenko V; Alves JMP
    Parasitology; 2018 Sep; 145(10):1287-1293. PubMed ID: 29642956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: evidence for paraphyly of Trypanosoma and six other genera.
    Hughes AL; Piontkivska H
    Mol Biol Evol; 2003 Apr; 20(4):644-52. PubMed ID: 12679543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal gene transfer in trypanosomatids.
    Opperdoes FR; Michels PA
    Trends Parasitol; 2007 Oct; 23(10):470-6. PubMed ID: 17826337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetoplastid-specific histone variant functions are conserved in Leishmania major.
    Anderson BA; Wong IL; Baugh L; Ramasamy G; Myler PJ; Beverley SM
    Mol Biochem Parasitol; 2013 Oct; 191(2):53-7. PubMed ID: 24080031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts.
    Alves JM; Voegtly L; Matveyev AV; Lara AM; da Silva FM; Serrano MG; Buck GA; Teixeira MM; Camargo EP
    PLoS One; 2011; 6(8):e23518. PubMed ID: 21853145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution.
    Harmer J; Yurchenko V; Nenarokova A; Lukeš J; Ginger ML
    Parasitology; 2018 Sep; 145(10):1311-1323. PubMed ID: 29895336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of the kinetoplastida: taxonomic problems and insights into the evolution of parasitism.
    Maslov DA; Podlipaev SA; Lukes J
    Mem Inst Oswaldo Cruz; 2001 Apr; 96(3):397-402. PubMed ID: 11313652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids.
    Opperdoes FR; Butenko A; Flegontov P; Yurchenko V; Lukeš J
    J Eukaryot Microbiol; 2016 Sep; 63(5):657-78. PubMed ID: 27009761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary analysis of synteny and gene fusion for pyrimidine biosynthetic enzymes in Euglenozoa: an extraordinary gap between kinetoplastids and diplonemids.
    Makiuchi T; Annoura T; Hashimoto T; Murata E; Aoki T; Nara T
    Protist; 2008 Jul; 159(3):459-70. PubMed ID: 18394957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene cluster analysis method identifies horizontally transferred genes with high reliability and indicates that they provide the main mechanism of operon gain in 8 species of gamma-Proteobacteria.
    Homma K; Fukuchi S; Nakamura Y; Gojobori T; Nishikawa K
    Mol Biol Evol; 2007 Mar; 24(3):805-13. PubMed ID: 17185745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis.
    Venkatesh D; Zhang N; Zoltner M; Del Pino RC; Field MC
    Traffic; 2018 Nov; 19(11):803-812. PubMed ID: 29974581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.