BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19969064)

  • 1. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism.
    Park EJ; Yi J; Kim Y; Choi K; Park K
    Toxicol In Vitro; 2010 Apr; 24(3):872-8. PubMed ID: 19969064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of multi-functional silver nanoparticles with living cells.
    Sur I; Cam D; Kahraman M; Baysal A; Culha M
    Nanotechnology; 2010 Apr; 21(17):175104. PubMed ID: 20368680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells.
    Eom HJ; Choi J
    Environ Sci Technol; 2010 Nov; 44(21):8337-42. PubMed ID: 20932003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells.
    Song XL; Li B; Xu K; Liu J; Ju W; Wang J; Liu XD; Li J; Qi YF
    Cell Biol Toxicol; 2012 Aug; 28(4):225-37. PubMed ID: 22415596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers.
    Lin JJ; Lin WC; Dong RX; Hsu SH
    Nanotechnology; 2012 Feb; 23(6):065102. PubMed ID: 22248930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent cellular toxicity of silver nanoparticles.
    Kim TH; Kim M; Park HS; Shin US; Gong MS; Kim HW
    J Biomed Mater Res A; 2012 Apr; 100(4):1033-43. PubMed ID: 22308013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice.
    Park EJ; Choi K; Park K
    Arch Pharm Res; 2011 Feb; 34(2):299-307. PubMed ID: 21380814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating cell specific cytotoxicity of differentially charged silver nanoparticles.
    Kaur J; Tikoo K
    Food Chem Toxicol; 2013 Jan; 51():1-14. PubMed ID: 22975145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes.
    Yen HJ; Hsu SH; Tsai CL
    Small; 2009 Jul; 5(13):1553-61. PubMed ID: 19326357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis.
    Hsiao IL; Hsieh YK; Wang CF; Chen IC; Huang YJ
    Environ Sci Technol; 2015 Mar; 49(6):3813-21. PubMed ID: 25692749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings.
    Rosas-Hernández H; Jiménez-Badillo S; Martínez-Cuevas PP; Gracia-Espino E; Terrones H; Terrones M; Hussain SM; Ali SF; González C
    Toxicol Lett; 2009 Dec; 191(2-3):305-13. PubMed ID: 19800954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans.
    Meyer JN; Lord CA; Yang XY; Turner EA; Badireddy AR; Marinakos SM; Chilkoti A; Wiesner MR; Auffan M
    Aquat Toxicol; 2010 Oct; 100(2):140-50. PubMed ID: 20708279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.
    Römer I; White TA; Baalousha M; Chipman K; Viant MR; Lead JR
    J Chromatogr A; 2011 Jul; 1218(27):4226-33. PubMed ID: 21529813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor.
    Zielinska E; Tukaj C; Radomski MW; Inkielewicz-Stepniak I
    PLoS One; 2016; 11(10):e0164137. PubMed ID: 27716791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the surface chemistry of silver nanoparticles on cell death.
    Sur I; Altunbek M; Kahraman M; Culha M
    Nanotechnology; 2012 Sep; 23(37):375102. PubMed ID: 22922335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface charge-dependent toxicity of silver nanoparticles.
    El Badawy AM; Silva RG; Morris B; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2011 Jan; 45(1):283-7. PubMed ID: 21133412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells.
    Avalos A; Haza AI; Mateo D; Morales P
    J Appl Toxicol; 2014 Apr; 34(4):413-23. PubMed ID: 24243578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.