These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1998015)

  • 21. Healing patterns of metaphyseal fractures.
    Uhthoff HK; Rahn BA
    Clin Orthop Relat Res; 1981 Oct; (160):295-303. PubMed ID: 7285432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.
    Collette NM; Yee CS; Hum NR; Murugesh DK; Christiansen BA; Xie L; Economides AN; Manilay JO; Robling AG; Loots GG
    Bone; 2016 Jul; 88():20-30. PubMed ID: 27102547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits.
    Zhao L; Zhao J; Yu J; Sun R; Zhang X; Hu S
    Regen Med; 2017 Apr; 12(4):353-364. PubMed ID: 28621175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia.
    Li J; Kreicbergs A; Bergström J; Stark A; Ahmed M
    J Orthop Res; 2007 Sep; 25(9):1204-12. PubMed ID: 17503519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray diagnosis of healing fractures in rabbits.
    Nicholls PJ; Berg E; Bliven FE; Kling JM
    Clin Orthop Relat Res; 1979; (142):234-6. PubMed ID: 498640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of vascularized periosteum on revitalization of massive bone isografts: An experimental study in a rabbit model.
    Barastegui D; Gallardo-Calero I; Rodriguez-Carunchio L; Barrera-Ochoa S; Knorr J; Rivas-Nicolls D; Soldado F
    Microsurgery; 2021 Feb; 41(2):157-164. PubMed ID: 32949430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing the composition of bone formed during fracture healing using scanning electron microscopy techniques.
    Perdikouri C; Tägil M; Isaksson H
    Calcif Tissue Int; 2015 Jan; 96(1):11-7. PubMed ID: 25537634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling.
    McDonald MM; Dulai S; Godfrey C; Amanat N; Sztynda T; Little DG
    Bone; 2008 Oct; 43(4):653-62. PubMed ID: 18582604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new experimental model to study healing process of metaphyseal fracture.
    Han N; Zhang PX; Wang WB; Han DC; Chen JH; Zhan HB; Jiang BG
    Chin Med J (Engl); 2012 Feb; 125(4):676-9. PubMed ID: 22490495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mineral phase in the repair of experimental fractures. A comparative study on rats using microradiography, oxytetracycline labelling and microangiography.
    Slätis P; Rokkanen P
    Ann Chir Gynaecol Fenn; 1967; 56(2):193-201. PubMed ID: 6065328
    [No Abstract]   [Full Text] [Related]  

  • 31. Osteogenic growth peptide enhances the rate of fracture healing in rabbits.
    Sun YQ; Ashhurst DE
    Cell Biol Int; 1998; 22(4):313-9. PubMed ID: 10101048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation.
    Sisask G; Marsell R; Sundgren-Andersson A; Larsson S; Nilsson O; Ljunggren O; Jonsson KB
    Bone; 2013 May; 54(1):126-32. PubMed ID: 23337038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The demonstration of bone and cartilage remodelling using alcian blue and hematoxylin.
    Sayers DC; Volpin G; Bentley G
    Stain Technol; 1988 Jan; 63(1):59-63. PubMed ID: 2451328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EphB4 enhances the process of endochondral ossification and inhibits remodeling during bone fracture repair.
    Arthur A; Panagopoulos RA; Cooper L; Menicanin D; Parkinson IH; Codrington JD; Vandyke K; Zannettino AC; Koblar SA; Sims NA; Matsuo K; Gronthos S
    J Bone Miner Res; 2013 Apr; 28(4):926-35. PubMed ID: 23165754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Delayed remodeling in the early period of fracture healing in spontaneously diabetic BB/OK rats depending on the diabetic metabolic state.
    Follak N; Klöting L; Wolf E; Merk H
    Histol Histopathol; 2004 Apr; 19(2):473-86. PubMed ID: 15024708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computed tomography and plain radiography in experimental fracture healing.
    Braunstein EM; Goldstein SA; Ku J; Smith P; Matthews LS
    Skeletal Radiol; 1986; 15(1):27-31. PubMed ID: 3941920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fracture callus cartilage differentiation in vitro.
    Ketenjian AY; Arsenis C
    In Vitro; 1975; 11(1):35-40. PubMed ID: 1126736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies of the skeletal mass and bone formation of tibial fracture callus and femoral bone in growing osteopenic rats.
    Lindholm TS
    Acta Chir Scand Suppl; 1974; 449():37-42. PubMed ID: 4533568
    [No Abstract]   [Full Text] [Related]  

  • 39. The vascular repair of an experimental osteotomy held in an external fixator.
    Brueton RN; Brookes M; Heatley FW
    Clin Orthop Relat Res; 1990 Aug; (257):286-304. PubMed ID: 2379366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process.
    Wang L; Li G; Ren L; Kong X; Wang Y; Han X; Jiang W; Dai K; Yang K; Hao Y
    Int J Nanomedicine; 2017; 12():8443-8457. PubMed ID: 29225463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.