These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1998486)

  • 1. The effect of high pressure on microporous membrane oxygenator failure.
    Tamari Y; Tortolani AJ; Maquine M; Lee-Sensiba K; Guarino J
    Artif Organs; 1991 Feb; 15(1):15-22. PubMed ID: 1998486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloodless testing for microporous membrane oxygenator failure: a preliminary study.
    Tamari Y; Tortolani AJ; Lee-Sensiba KJ
    Int J Artif Organs; 1991 Mar; 14(3):154-60. PubMed ID: 2045190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The response of canine coronary vascular resistance to local alterations in coronary arterial P CO2.
    Case RB; Greenberg H
    Circ Res; 1976 Oct; 39(4):558-66. PubMed ID: 963840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-exchange function of a preprimed pediatric oxygenator stored for one year for emergency cardiopulmonary bypass.
    Otsu T; Terasaki H; Choi H; Tajiri A; Okamoto T; Matsuyama K; Morioka T
    Artif Organs; 1992 Oct; 16(5):502-4. PubMed ID: 10078300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and clinical application of a new membrane oxygenator using a microporous polysulfone membrane.
    Dohi T; Hamada E; Murakami T; Nawa S; Komoto Y; Teramoto S; Kanbayashi T
    Trans Am Soc Artif Intern Organs; 1982; 28():338-41. PubMed ID: 7164260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Extracorporeal membrane oxygenation treatment of a neonate with severe low cardiac output syndrome following open heart surgery].
    Lin R; Tan LH; Zhang ZW; Sun MY; Du LZ
    Zhonghua Er Ke Za Zhi; 2008 Jan; 46(1):26-9. PubMed ID: 18353234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass.
    Graham JM; Gibbs NM; Weightman WM; Sheminant MR
    Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-transfer performance of a newly designed, very low-volume membrane oxygenator.
    Burn F; Ciocan S; Carmona NM; Berner M; Sourdon J; Carrel TP; Tevaearai Stahel HT; Longnus SL
    Interact Cardiovasc Thorac Surg; 2015 Sep; 21(3):352-8. PubMed ID: 26037378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass.
    Jegger D; Tevaearai HT; Mallabiabarrena I; Horisberger J; Seigneul I; von Segesser LK
    Artif Organs; 2007 Apr; 31(4):290-300. PubMed ID: 17437498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contemporary Oxygenator Design: Shear Stress-Related Oxygen and Carbon Dioxide Transfer.
    Hendrix RHJ; Ganushchak YM; Weerwind PW
    Artif Organs; 2018 Jun; 42(6):611-619. PubMed ID: 29473675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation.
    Walczak R; Lawson DS; Kaemmer D; McRobb C; McDermott P; Smigla G; Shearer I; Lodge A; Jaggers J
    Perfusion; 2005 Sep; 20(5):269-75. PubMed ID: 16231623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.
    Henriksen L
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):366-78. PubMed ID: 3086331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of the performance of an oxygenator depending on the non-standard gas content of the inlet blood with special regard on CO2 elimination.
    Hima F; Saunders A; Kashefi A; Mouzakis F; Mottaghy K; Spillner J; Zayat R; Kalverkamp S
    Perfusion; 2023 Sep; ():2676591231204565. PubMed ID: 37739434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory evaluation of a new membrane oxygenator with a built-in hemoconcentrator.
    Nishida H; Suzuki S; Endo M; Koyanagi H; Kuwana K; Nakanishi H; Aoki M
    J Extra Corpor Technol; 1997 Dec; 29(4):189-93. PubMed ID: 10176128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent control of blood gas PO2 and PCO2 in a bubble oxygenator.
    Sutherland KM; Pearson DT; Gordon LS
    Clin Phys Physiol Meas; 1988 May; 9(2):97-105. PubMed ID: 3134153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of the Dideco D903 Avant 1.7 hollow-fibre membrane oxygenator.
    Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK
    Perfusion; 1998 Sep; 13(5):353-9. PubMed ID: 9778721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators.
    Philipp A; Wiesenack C; Behr R; Schmid FX; Birnbaum DE
    Perfusion; 2002 May; 17(3):175-8. PubMed ID: 12017384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygenator evaluation: Maxima 1380 versus Maxima Plus.
    Engle JH; Ploessl J; Sutton R
    J Extra Corpor Technol; 1995 Mar; 27(1):15-8. PubMed ID: 10150756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.