These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 1998698)

  • 1. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles.
    MacDonald RC; MacDonald RI; Menco BP; Takeshita K; Subbarao NK; Hu LR
    Biochim Biophys Acta; 1991 Jan; 1061(2):297-303. PubMed ID: 1998698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential.
    Hope MJ; Bally MB; Webb G; Cullis PR
    Biochim Biophys Acta; 1985 Jan; 812(1):55-65. PubMed ID: 23008845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicles of variable sizes produced by a rapid extrusion procedure.
    Mayer LD; Hope MJ; Cullis PR
    Biochim Biophys Acta; 1986 Jun; 858(1):161-8. PubMed ID: 3707960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of vesicle size on complement-dependent immune damage to liposomes.
    Richards RL; Habbersett RC; Scher I; Janoff AS; Schieren HP; Mayer LD; Cullis PR; Alving CR
    Biochim Biophys Acta; 1986 Feb; 855(2):223-30. PubMed ID: 3753881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of large unilamellar vesicles as models for studies of lipid peroxidation initiated by azocompounds.
    Fiorentini D; Cipollone M; Galli MC; Pugnaloni A; Biagini G; Landi L
    Free Radic Res; 1994 Oct; 21(5):329-39. PubMed ID: 7842142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes.
    Olson F; Hunt CA; Szoka FC; Vail WJ; Papahadjopoulos D
    Biochim Biophys Acta; 1979 Oct; 557(1):9-23. PubMed ID: 95096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes.
    Patil YP; Kumbhalkar MD; Jadhav S
    Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High encapsulation efficiencies in sized liposomes produced by extrusion of dehydration-rehydration vesicles.
    Aliño SF; Garcia-Sanz M; Irruarrizaga A; Alfaro J; Hernandez J
    J Microencapsul; 1990; 7(4):497-503. PubMed ID: 2266475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-fracture of lipids and model membrane systems.
    Hope MJ; Wong KF; Cullis PR
    J Electron Microsc Tech; 1989 Dec; 13(4):277-87. PubMed ID: 2681573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous vesiculation of phospholipids: a simple and quick method of forming unilamellar vesicles.
    Hauser H; Gains N
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1683-7. PubMed ID: 6952221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses.
    Schieren H; Rudolph S; Finkelstein M; Coleman P; Weissmann G
    Biochim Biophys Acta; 1978 Aug; 542(1):137-53. PubMed ID: 208648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.
    Düzgüneş N; Wilschut J; Hong K; Fraley R; Perry C; Friend DS; James TL; Papahadjopoulos D
    Biochim Biophys Acta; 1983 Jul; 732(1):289-99. PubMed ID: 6688185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of large monodisperse vesicles.
    Zhu TF; Szostak JW
    PLoS One; 2009; 4(4):e5009. PubMed ID: 19347043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of bilayer vesicles by self-assembly.
    Walker SA; Kennedy MT; Zasadzinski JA
    Nature; 1997 May; 387(6628):61-4. PubMed ID: 9139822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field.
    Mathivet L; Cribier S; Devaux PF
    Biophys J; 1996 Mar; 70(3):1112-21. PubMed ID: 8785271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdigitation--fusion liposomes.
    Ahl PL; Perkins WR
    Methods Enzymol; 2003; 367():80-98. PubMed ID: 14611060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological characterization of liposome suspensions by stereological analysis of freeze-fracture replicas from spray-frozen samples.
    Guiot P; Baudhuin P; Gotfredsen C
    J Microsc; 1980 Nov; 120(Pt 2):159-74. PubMed ID: 6894314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.