BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 1999178)

  • 21. The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow.
    Mbalaviele G; Chen H; Boyce BF; Mundy GR; Yoneda T
    J Clin Invest; 1995 Jun; 95(6):2757-65. PubMed ID: 7769116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity.
    Kanatani M; Sugimoto T; Kano J; Kanzawa M; Chihara K
    J Cell Physiol; 2003 Jul; 196(1):180-9. PubMed ID: 12767054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compactin suppresses bone resorption by inhibiting the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts.
    Woo JT; Kasai S; Stern PH; Nagai K
    J Bone Miner Res; 2000 Apr; 15(4):650-62. PubMed ID: 10780857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation.
    Hattersley G; Chambers TJ
    Endocrinology; 1989 Apr; 124(4):1689-96. PubMed ID: 2924719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colony-stimulating factor-1 stimulates the fusion process in osteoclasts.
    Amano H; Yamada S; Felix R
    J Bone Miner Res; 1998 May; 13(5):846-53. PubMed ID: 9610749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two distinct effects of recombinant human tumor necrosis factor-alpha on osteoclast development and subsequent resorption of mineralized matrix.
    van der Pluijm G; Most W; van der Wee-Pals L; de Groot H; Papapoulos S; Löwik C
    Endocrinology; 1991 Sep; 129(3):1596-604. PubMed ID: 1874190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation.
    Nishiyama K; Sugimoto T; Kaji H; Kanatani M; Kobayashi T; Chihara K
    Endocrinology; 1996 Jan; 137(1):35-41. PubMed ID: 8536635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interleukin-1 alpha stimulates osteoclast formation from peripheral blood monocytes and increases osteoclastic activity.
    Shih C; Huang MY
    Zhonghua Yi Xue Za Zhi (Taipei); 1996 Feb; 57(2):85-92. PubMed ID: 8634935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts.
    Takeshita S; Kaji K; Kudo A
    J Bone Miner Res; 2000 Aug; 15(8):1477-88. PubMed ID: 10934646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithium inhibits calcitriol-stimulated formation of multinucleated cells in human long-term marrow cultures.
    Pepersack T; Corazza F; Demulder A; Guns M; Fondu P; Bergmann P
    J Bone Miner Res; 1994 May; 9(5):645-50. PubMed ID: 8053393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transforming growth factor-beta stimulates bone resorption in neonatal mouse calvariae by a prostaglandin-unrelated but cell proliferation-dependent pathway.
    Lerner UH
    J Bone Miner Res; 1996 Nov; 11(11):1628-39. PubMed ID: 8915770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lycopene I--effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures.
    Rao LG; Krishnadev N; Banasikowska K; Rao AV
    J Med Food; 2003; 6(2):69-78. PubMed ID: 12935316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An assay system utilizing devitalized bone for assessment of differentiation of osteoclast progenitors.
    Amano S; Hanazawa S; Kawata Y; Ohta K; Kitami H; Kitano S
    J Bone Miner Res; 1992 Mar; 7(3):321-8. PubMed ID: 1585834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of alendronate treatment on the osteoclastogenic potential of bone marrow cells in mice.
    van Beek ER; Löwik CW; Papapoulos SE
    Bone; 1997 Apr; 20(4):335-40. PubMed ID: 9108353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrins and osteoclastic resorption in three bone organ cultures: differential sensitivity to synthetic Arg-Gly-Asp peptides during osteoclast formation.
    van der Pluijm G; Mouthaan H; Baas C; de Groot H; Papapoulos S; Löwik C
    J Bone Miner Res; 1994 Jul; 9(7):1021-8. PubMed ID: 7942148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of parathyroid hormone or 1,25-dihydroxyvitamin D3 on monocyte-osteoclast fusion.
    Teti A; Volleth G; Carano A; Zambonin Zallone A
    Calcif Tissue Int; 1988 May; 42(5):302-8. PubMed ID: 3135098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effect of beta-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures.
    Uchiyama S; Yamaguchi M
    Biochem Pharmacol; 2004 Apr; 67(7):1297-305. PubMed ID: 15013845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances.
    Huffer WE
    Lab Invest; 1988 Oct; 59(4):418-42. PubMed ID: 3050272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function.
    Udagawa N; Takahashi N; Yasuda H; Mizuno A; Itoh K; Ueno Y; Shinki T; Gillespie MT; Martin TJ; Higashio K; Suda T
    Endocrinology; 2000 Sep; 141(9):3478-84. PubMed ID: 10965921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function.
    Hill PA; Reynolds JJ; Meikle MC
    Endocrinology; 1995 Jan; 136(1):124-31. PubMed ID: 7828521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.