BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1999412)

  • 1. Structural and functional role of the amino-terminal region of porcine cytosolic aspartate aminotransferase. Catalytic and structural properties of enzyme derivatives truncated on the amino-terminal side.
    Fukumoto Y; Tanase S; Nagashima F; Ueda S; Ikegami K; Morino Y
    J Biol Chem; 1991 Mar; 266(7):4187-93. PubMed ID: 1999412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional role of the amino-terminal mobile segment in catalysis by porcine cytosolic aspartate aminotransferase. Critical importance of Val17 and Phe18 for productive binding of substrates.
    Nishimura K; Higaki T; Okamura H; Tanase S
    J Biol Chem; 1994 Oct; 269(40):24712-8. PubMed ID: 7929145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles of valine 37 and glycine 38 in the mobile loop of porcine cytosolic aspartate aminotransferase.
    Pan QW; Tanase S; Fukumoto Y; Nagashima F; Rhee S; Rogers PH; Arnone A; Morino Y
    J Biol Chem; 1993 Nov; 268(33):24758-65. PubMed ID: 8227035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties.
    Chuang HH; Lin HY; Lin FP
    FEBS J; 2008 May; 275(9):2240-54. PubMed ID: 18397326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate.
    Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H
    Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cDNA cloning and expression of pig cytosolic aspartate aminotransferase in Escherichia coli: amino-terminal heterogeneity of expressed products and lack of its correlation with enzyme function.
    Nagashima F; Tanase S; Fukumoto Y; Joh T; Nomiyama H; Tsuzuki T; Shimada K; Kuramitsu S; Kagamiyama H; Morino Y
    Biochemistry; 1989 Feb; 28(3):1153-60. PubMed ID: 2653435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed deletion mutants of a carboxyl-terminal region of human dihydrofolate reductase.
    Bullerjahn AM; Freisheim JH
    J Biol Chem; 1992 Jan; 267(2):864-70. PubMed ID: 1730674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity.
    Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E
    Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the activity of mitochondrial aspartate aminotransferase H352C by the redox state of the engineered interdomain disulfide bond.
    Pan P; Jakob CA; Sandmeier E; Christen P; Gehring H
    J Biol Chem; 1994 Oct; 269(41):25432-6. PubMed ID: 7929241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective proteolysis of cytosolic aspartate aminotransferase by a new microbial protease.
    Nagashima F; Tanase S; Higaki T; Morino Y; Murao S; Nishino T
    J Biochem; 1986 Apr; 99(4):1017-25. PubMed ID: 3519598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the catalytic activities and substrate specificities of Saccharomyces cerevisiae myristoyl-coenzyme A: protein N-myristoyltransferase deletion mutants and human/yeast Nmt chimeras in Escherichia coli and S. cerevisiae.
    Rudnick DA; Johnson RL; Gordon JI
    J Biol Chem; 1992 Nov; 267(33):23852-61. PubMed ID: 1429724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited proteolysis as a probe of conformational changes in aspartate aminotransferase from Sulfolobus solfataricus.
    Arnone MI; Birolo L; Giamberini M; Cubellis MV; Nitti G; Sannia G; Marino G
    Eur J Biochem; 1992 Mar; 204(3):1183-9. PubMed ID: 1551394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.
    Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC
    Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids.
    Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H
    Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of a glutamate dehydrogenase into methionine/norleucine dehydrogenase by site-directed mutagenesis.
    Wang XG; Britton KL; Stillman TJ; Rice DW; Engel PC
    Eur J Biochem; 2001 Nov; 268(22):5791-9. PubMed ID: 11722565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The flexible C-terminal region of Aspergillus terreus blasticidin S deaminase: identification of its functional roles with deletion enzymes.
    Kimura M; Furuichi M; Yamamoto M; Kumasaka T; Mizuno H; Miyano M; Yamaguchi I
    Biochem Biophys Res Commun; 2002 Jan; 290(1):421-6. PubMed ID: 11779186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate.
    Nakai T; Okada K; Akutsu S; Miyahara I; Kawaguchi S; Kato R; Kuramitsu S; Hirotsu K
    Biochemistry; 1999 Feb; 38(8):2413-24. PubMed ID: 10029535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyr225 in aspartate aminotransferase: contribution of the hydrogen bond between Tyr225 and coenzyme to the catalytic reaction.
    Inoue K; Kuramitsu S; Okamoto A; Hirotsu K; Higuchi T; Morino Y; Kagamiyama H
    J Biochem; 1991 Apr; 109(4):570-6. PubMed ID: 1869510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sole lysine residue in porcine pepsin works as a key residue for catalysis and conformational flexibility.
    Cottrell TJ; Harris LJ; Tanaka T; Yada RY
    J Biol Chem; 1995 Aug; 270(34):19974-8. PubMed ID: 7650014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant improvement to the catalytic properties of aspartate aminotransferase: role of hydrophobic and charged residues in the substrate binding pocket.
    Köhler E; Seville M; Jäger J; Fotheringham I; Hunter M; Edwards M; Jansonius JN; Kirschner K
    Biochemistry; 1994 Jan; 33(1):90-7. PubMed ID: 7904477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.