BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19994493)

  • 1. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.
    Chawla AS; Lo JY; Baker JA; Samei E
    Med Phys; 2009 Nov; 36(11):4859-69. PubMed ID: 19994493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model platform for optimizing a multiprojection breast imaging system.
    Chawla AS; Samei E; Saunders RS; Lo JY; Baker JA
    Med Phys; 2008 Apr; 35(4):1337-45. PubMed ID: 18491528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-based assessment of breast tomosynthesis: effect of acquisition parameters and quantum noise.
    Reiser I; Nishikawa RM
    Med Phys; 2010 Apr; 37(4):1591-600. PubMed ID: 20443480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards optimized acquisition scheme for multiprojection correlation imaging of breast cancer.
    Chawla AS; Saunders RS; Singh S; Lo JY; Samei E
    Acad Radiol; 2009 Apr; 16(4):456-63. PubMed ID: 19268858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality.
    Samei E; Saunders RS
    Phys Med Biol; 2011 Oct; 56(19):6359-78. PubMed ID: 21908902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human observer performance on in-plane digital breast tomosynthesis images: Effects of reconstruction filters and data acquisition angles on signal detection.
    Lee C; Han M; Baek J
    PLoS One; 2020; 15(3):e0229915. PubMed ID: 32163472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Fourier-domain task-based detectability index in tomosynthesis and cone-beam CT in relation to human observer performance.
    Gang GJ; Lee J; Stayman JW; Tward DJ; Zbijewski W; Prince JL; Siewerdsen JH
    Med Phys; 2011 Apr; 38(4):1754-68. PubMed ID: 21626910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.
    Sechopoulos I; Bliznakova K; Fei B
    Med Phys; 2013 Oct; 40(10):101905. PubMed ID: 24089907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the key imaging parameters for detection of microcalcifications in a newly developed digital breast tomosynthesis system.
    Park HS; Kim YS; Kim HJ; Choi JG; Choi YW
    Clin Imaging; 2013; 37(6):993-9. PubMed ID: 23891226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast tomosynthesis using the multiple projection algorithm adapted for stationary detectors.
    Malliori A; Bliznakova K; Bliznakov Z; Cockmartin L; Bosmans H; Pallikarakis N
    J Xray Sci Technol; 2016; 24(1):23-41. PubMed ID: 26890907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.