These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19994503)

  • 1. Experimental validation of Monte Carlo (MANTIS) simulated x-ray response of columnar CsI scintillator screens.
    Freed M; Miller S; Tang K; Badano A
    Med Phys; 2009 Nov; 36(11):4944-56. PubMed ID: 19994503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems.
    Freed M; Park S; Badano A
    Med Phys; 2010 Jun; 37(6):2593-605. PubMed ID: 20632571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of columnar CsI x-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled x-ray, electron, and optical transport.
    Sharma D; Badano A
    Med Phys; 2013 Mar; 40(3):031907. PubMed ID: 23464322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic imaging performance in breast tomosynthesis.
    Badano A; Kyprianou IS; Jennings RJ; Sempau J
    Med Phys; 2007 Nov; 34(11):4076-91. PubMed ID: 18074617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic imaging performance in indirect x-ray imaging detectors.
    Badano A; Kyprianou IS; Sempau J
    Med Phys; 2006 Aug; 33(8):2698-713. PubMed ID: 16967568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-5. PubMed ID: 25771557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray imaging performance of structured cesium iodide scintillators.
    Zhao W; Ristic G; Rowlands JA
    Med Phys; 2004 Sep; 31(9):2594-605. PubMed ID: 15487742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo model of a prototype flat-panel detector for multi-energy applications in radiotherapy.
    Ozoemelam I; Myronakis M; Harris TC; Corral Arroyo P; Huber P; Jacobson MW; Hu YH; Fueglistaller R; Lehmann M; Morf D; Berbeco RI
    Med Phys; 2023 Oct; 50(10):5944-5955. PubMed ID: 37665764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems.
    Badano A; Sempau J
    Phys Med Biol; 2006 Mar; 51(6):1545-61. PubMed ID: 16510962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the scintillation detector in a combined 3D megavoltage CT scanner and portal imager.
    Mosleh-Shirazi MA; Swindell W; Evans PM
    Med Phys; 1998 Oct; 25(10):1880-90. PubMed ID: 9800695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.
    Sharma D; Badal A; Badano A
    Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators.
    Howansky A; Peng B; Lubinsky AR; Zhao W
    Med Phys; 2017 Mar; 44(3):847-860. PubMed ID: 28039881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl.
    Arvanitis CD; Bohndiek SE; Blakesley J; Olivo A; Speller RD
    Med Phys; 2009 Jan; 36(1):116-26. PubMed ID: 19235380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmented crystalline scintillators: an initial investigation of high quantum efficiency detectors for megavoltage x-ray imaging.
    Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Li Y; Su Z; Wang Y; Yamamoto J; Du H; Cunningham I; Klugerman M; Shah K
    Med Phys; 2005 Oct; 32(10):3067-83. PubMed ID: 16279059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of oblique X-ray incidence in flat-panel computed tomography of the breast.
    Badano A; Kyprianou IS; Freed M; Jennings RJ; Sempau J
    IEEE Trans Med Imaging; 2009 May; 28(5):696-702. PubMed ID: 19272986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full modulation transfer functions of thick parallel- and focused-element scintillator arrays obtained by a Monte Carlo optical transport model.
    Zarrini-Monfared Z; Karbasi S; Zamani A; Mosleh-Shirazi MA
    Med Phys; 2023 Jun; 50(6):3651-3660. PubMed ID: 36779548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.
    Larsson JC; Lundström U; Hertz HM
    Med Phys; 2016 Jun; 43(6):2731-2740. PubMed ID: 27277020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models.
    Liaparinos P; Bliznakova K
    Med Phys; 2012 Nov; 39(11):6638-51. PubMed ID: 23127058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling granular phosphor screens by Monte Carlo methods.
    Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS
    Med Phys; 2006 Dec; 33(12):4502-14. PubMed ID: 17278802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.