These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19994525)

  • 1. Compact x-ray sources for mammographic applications: Monte Carlo simulations of image quality.
    Oliva P; Golosio B; Stumbo S; Bravin A; Tomassini P
    Med Phys; 2009 Nov; 36(11):5149-61. PubMed ID: 19994525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monochromatic mammography using scanning multilayer X-ray mirrors.
    Windt DL
    Rev Sci Instrum; 2018 Aug; 89(8):083702. PubMed ID: 30184654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammography with synchrotron radiation: phase-detection techniques.
    Arfelli F; Bonvicini V; Bravin A; Cantatore G; Castelli E; Palma LD; Michiel MD; Fabrizioli M; Longo R; Menk RH; Olivo A; Pani S; Pontoni D; Poropat P; Prest M; Rashevsky A; Ratti M; Rigon L; Tromba G; Vacchi A; Vallazza E; Zanconati F
    Radiology; 2000 Apr; 215(1):286-93. PubMed ID: 10751500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattered radiation in scanning slot mammography.
    Jing Z; Huda W; Walker JK
    Med Phys; 1998 Jul; 25(7 Pt 1):1111-7. PubMed ID: 9682196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources.
    De Caro L; Giannini C; Bellotti R; Tangaro S
    Med Phys; 2009 Oct; 36(10):4644-53. PubMed ID: 19928096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of primary electron production inside an a-selenium detector for x-ray mammography: physics.
    Sakellaris T; Spyrou G; Tzanakos G; Panayiotakis G
    Phys Med Biol; 2005 Aug; 50(16):3717-38. PubMed ID: 16077223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography.
    Ay MR; Sarkar S; Shahriari M; Sardari D; Zaidi H
    Med Phys; 2005 Jun; 32(6):1660-75. PubMed ID: 16013725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monochromatic x-rays for low-dose digital mammography: preliminary results.
    Yoon KH; Kwon YM; Choi BJ; Son HH; Ryu CW; Chon KS; Park SH; Juhng SK
    Invest Radiol; 2012 Dec; 47(12):683-7. PubMed ID: 22996316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of a mammographic test phantom.
    Hunt RA; Dance DR; Pachoud M; Alm Carlsson G; Sandborg M; Ullman G; Verdun FR
    Radiat Prot Dosimetry; 2005; 114(1-3):432-5. PubMed ID: 15933151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy, angular and spatial distributions of primary electrons inside photoconducting materials for digital mammography: Monte Carlo simulation studies.
    Sakellaris T; Spyrou G; Tzanakos G; Panayiotakis G
    Phys Med Biol; 2007 Nov; 52(21):6439-60. PubMed ID: 17951854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital mammography image simulation using Monte Carlo.
    Peplow DE; Verghese K
    Med Phys; 2000 Mar; 27(3):568-79. PubMed ID: 10757608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monochromatic x-rays in digital mammography.
    Lawaczeck R; Arkadiev V; Diekmann F; Krumrey M
    Invest Radiol; 2005 Jan; 40(1):33-9. PubMed ID: 15597018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of x-ray energy dispersion in digital subtraction imaging at the iodine K-edge--a Monte Carlo study.
    Prino F; Ceballos C; Cabal A; Sarnelli A; Gambaccini M; Ramello L
    Med Phys; 2008 Jan; 35(1):13-24. PubMed ID: 18293556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast tomosynthesis with monochromatic beams: a feasibility study using Monte Carlo simulations.
    Malliori A; Bliznakova K; Sechopoulos I; Kamarianakis Z; Fei B; Pallikarakis N
    Phys Med Biol; 2014 Aug; 59(16):4681-96. PubMed ID: 25082791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the glandular composition on digital breast tomosynthesis image quality and dose optimisation.
    Marques T; Ribeiro A; Di Maria S; Belchior A; Cardoso J; Matela N; Oliveira N; Janeiro L; Almeida P; Vaz P
    Radiat Prot Dosimetry; 2015 Jul; 165(1-4):337-41. PubMed ID: 25836692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of breast imaging using synchrotron radiation.
    Fitousi NT; Delis H; Panayiotakis G
    Med Phys; 2012 Apr; 39(4):2069-77. PubMed ID: 22482628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo performance on the x-ray converter thickness in digital mammography using software breast models.
    Liaparinos P; Bliznakova K
    Med Phys; 2012 Nov; 39(11):6638-51. PubMed ID: 23127058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalized glandular dose (DgN) coefficients from experimental mammographic x-ray spectra.
    Santos JC; Tomal A; de Barros N; Costa PR
    Phys Med Biol; 2019 May; 64(10):105010. PubMed ID: 30959490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.