These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19994851)

  • 1. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.
    Seo D; Song H
    J Am Chem Soc; 2009 Dec; 131(51):18210-1. PubMed ID: 19994851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new photothermal therapeutic agent: core-free nanostructured Au x Ag1-x dendrites.
    Hu KW; Huang CC; Hwu JR; Su WC; Shieh DB; Yeh CS
    Chemistry; 2008; 14(10):2956-64. PubMed ID: 18335446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo monitoring of intravenously injected gold nanorods using near-infrared light.
    Niidome T; Akiyama Y; Shimoda K; Kawano T; Mori T; Katayama Y; Niidome Y
    Small; 2008 Jul; 4(7):1001-7. PubMed ID: 18581412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating.
    Xiang Y; Wu X; Liu D; Li Z; Chu W; Feng L; Zhang K; Zhou W; Xie S
    Langmuir; 2008 Apr; 24(7):3465-70. PubMed ID: 18294010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.
    Sun Y; Wiley B; Li ZY; Xia Y
    J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement at the junction of silver nanorods.
    Gu GH; Suh JS
    Langmuir; 2008 Aug; 24(16):8934-8. PubMed ID: 18616307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid synthesis of gold nanorods using a one-step photochemical strategy.
    Ahmed M; Narain R
    Langmuir; 2010 Dec; 26(23):18392-9. PubMed ID: 21043446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods.
    Okuno Y; Nishioka K; Kiya A; Nakashima N; Ishibashi A; Niidome Y
    Nanoscale; 2010 Aug; 2(8):1489-93. PubMed ID: 20820740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallodielectric hollow shells: optical and catalytic properties.
    Pastoriza-Santos I; Pérez-Juste J; Carregal-Romero S; Hervés P; Liz-Marzán LM
    Chem Asian J; 2006 Nov; 1(5):730-6. PubMed ID: 17441116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers.
    Gentili D; Ori G; Comes Franchini M
    Chem Commun (Camb); 2009 Oct; (39):5874-6. PubMed ID: 19787126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrasensitive, non-enzymatic glucose assay via gold nanorod-assisted generation of silver nanoparticles.
    Xianyu Y; Sun J; Li Y; Tian Y; Wang Z; Jiang X
    Nanoscale; 2013 Jul; 5(14):6303-6. PubMed ID: 23740385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction.
    Zhang Q; Xie J; Lee JY; Zhang J; Boothroyd C
    Small; 2008 Aug; 4(8):1067-71. PubMed ID: 18651712
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles.
    Xie W; Su L; Donfack P; Shen A; Zhou X; Sackmann M; Materny A; Hu J
    Chem Commun (Camb); 2009 Sep; (35):5263-5. PubMed ID: 19707640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.