These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19994870)
1. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Lee SW; Lee HJ; Choi JH; Koh WG; Myoung JM; Hur JH; Park JJ; Cho JH; Jeong U Nano Lett; 2010 Jan; 10(1):347-51. PubMed ID: 19994870 [TBL] [Abstract][Full Text] [Related]
2. Directly drawn poly(3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: improving performance with surface modification. Jeong YJ; Lee H; Lee BS; Park S; Yudistira HT; Choong CL; Park JJ; Park CE; Byun D ACS Appl Mater Interfaces; 2014 Jul; 6(13):10736-43. PubMed ID: 24942503 [TBL] [Abstract][Full Text] [Related]
3. Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers. Chen JY; Su CY; Hsu CH; Zhang YH; Zhang QC; Chang CL; Hua CC; Chen WC Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31540102 [TBL] [Abstract][Full Text] [Related]
4. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. Beaulieu MR; Baral JK; Hendricks NR; Tang Y; BriseƱo AL; Watkins JJ ACS Appl Mater Interfaces; 2013 Dec; 5(24):13096-103. PubMed ID: 24328123 [TBL] [Abstract][Full Text] [Related]
5. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. Ge F; Liu Z; Lee SB; Wang X; Zhang G; Lu H; Cho K; Qiu L ACS Appl Mater Interfaces; 2018 Jun; 10(25):21510-21517. PubMed ID: 29873226 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode. Sarker BK; Liu J; Zhai L; Khondaker SI ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101 [TBL] [Abstract][Full Text] [Related]
7. Poly(3-hexylthiophene) (P3HT)/graphene nanocomposite material based organic field effect transistor with enhanced mobility. Tiwari S; Singh AK; Prakash R J Nanosci Nanotechnol; 2014 Apr; 14(4):2823-8. PubMed ID: 24734696 [TBL] [Abstract][Full Text] [Related]
8. Utilizing the Diffusion of Fluorinated Polymers to Modify the Semiconductor/Dielectric Interface in Solution-Processed Conjugated Polymer Field-Effect Transistors. Yang Y; Hong Y; Wang X ACS Appl Mater Interfaces; 2021 Feb; 13(7):8682-8691. PubMed ID: 33565853 [TBL] [Abstract][Full Text] [Related]
9. Polymer Electrolyte Blend Gate Dielectrics for High-Performance Ultrathin Organic Transistors: Toward Favorable Polymer Blend Miscibility and Reliability. Nketia-Yawson B; Tabi GD; Noh YY ACS Appl Mater Interfaces; 2019 May; 11(19):17610-17616. PubMed ID: 31018635 [TBL] [Abstract][Full Text] [Related]
10. Liquid crystal-gated-organic field-effect transistors with in-plane drain-source-gate electrode structure. Seo J; Nam S; Jeong J; Lee C; Kim H; Kim Y ACS Appl Mater Interfaces; 2015 Jan; 7(1):504-10. PubMed ID: 25478816 [TBL] [Abstract][Full Text] [Related]
11. Preparation of Nanocomposite-based High Performance Organic Field Effect Transistor via Solution Floating Method and Mechanical Property Evaluation. Kim Y; Kwon YJ; Ryu S; Lee CJ; Lee JU Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370273 [TBL] [Abstract][Full Text] [Related]
12. Flexible Thermal Sensors Based on Organic Field-Effect Transistors with Polymeric Channel/Gate-Insulating and Light-Blocking Layers. Song M; Seo J; Kim H; Kim Y ACS Omega; 2017 Jul; 2(7):4065-4070. PubMed ID: 31457707 [TBL] [Abstract][Full Text] [Related]
13. Flexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water. Sung Y; Shin EY; Noh YY; Lee JY ACS Appl Mater Interfaces; 2020 Jun; 12(22):25092-25099. PubMed ID: 32362121 [TBL] [Abstract][Full Text] [Related]
14. Nucleation, Growth, and Alignment of Poly(3-hexylthiophene) Nanofibers for High-Performance OFETs. Persson NE; Chu PH; McBride M; Grover M; Reichmanis E Acc Chem Res; 2017 Apr; 50(4):932-942. PubMed ID: 28234458 [TBL] [Abstract][Full Text] [Related]
15. Influence of nickel(II) oxide nanoparticle addition on the performance of organic field effect transistors. Park S; Nam S; Kim J; Seo J; Jeong J; Woo S; Kim H; Kim Y J Nanosci Nanotechnol; 2013 Sep; 13(9):6016-9. PubMed ID: 24205591 [TBL] [Abstract][Full Text] [Related]
16. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer. Han S; Yang X; Zhuang X; Yu J; Li L Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773667 [TBL] [Abstract][Full Text] [Related]
17. Amorphous Strontium Titanate Film as Gate Dielectric for Higher Performance and Low Voltage Operation of Transparent and Flexible Organic Field Effect Transistor. Yadav S; Ghosh S ACS Appl Mater Interfaces; 2016 Apr; 8(16):10436-42. PubMed ID: 27029419 [TBL] [Abstract][Full Text] [Related]
18. Large-Scale Alignment of Polymer Semiconductor Nanowires for Efficient Charge Transport via Controlled Evaporation of Confined Fluids. Jo G; Jeong JW; Choi S; Kim H; Park JJ; Jung J; Chang M ACS Appl Mater Interfaces; 2019 Jan; 11(1):1135-1142. PubMed ID: 30520290 [TBL] [Abstract][Full Text] [Related]
19. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors. Baek SW; Ha JW; Yoon M; Hwang DH; Lee J ACS Appl Mater Interfaces; 2018 Jun; 10(22):18948-18955. PubMed ID: 29756443 [TBL] [Abstract][Full Text] [Related]
20. High capacitance, photo-patternable ion gel gate insulators compatible with vapor deposition of metal gate electrodes. Choi JH; Gu Y; Hong K; Xie W; Frisbie CD; Lodge TP ACS Appl Mater Interfaces; 2014 Nov; 6(21):19275-81. PubMed ID: 25320873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]