These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19995083)

  • 41. Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction.
    Tseng CH; Tambe MJ; Lim SK; Smith MJ; Gradecak S
    Nanotechnology; 2010 Apr; 21(16):165605. PubMed ID: 20351413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior.
    Shin HS; Sohn JI; Kim DC; Huck WT; Welland ME; Choi HC; Kang DJ
    Nanotechnology; 2009 Feb; 20(8):085601. PubMed ID: 19417449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Site-specific ligation of DNA-modified gold nanoparticles activated by the restriction enzyme StyI.
    Kanaras AG; Wang Z; Hussain I; Brust M; Cosstick R; Bates AD
    Small; 2007 Jan; 3(1):67-70. PubMed ID: 17294471
    [No Abstract]   [Full Text] [Related]  

  • 44. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches.
    Bek A; Jansen R; Ringler M; Mayilo S; Klar TA; Feldmann J
    Nano Lett; 2008 Feb; 8(2):485-90. PubMed ID: 18173294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demonstration of defect-free and composition tunable GaxIn₁-xSb nanowires.
    Gorji Ghalamestani S; Ek M; Ganjipour B; Thelander C; Johansson J; Caroff P; Dick KA
    Nano Lett; 2012 Sep; 12(9):4914-9. PubMed ID: 22924832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.
    Kumara C; Zuo X; Cullen DA; Dass A
    ACS Nano; 2014 Jun; 8(6):6431-9. PubMed ID: 24813022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles.
    Yu H; Chen M; Rice PM; Wang SX; White RL; Sun S
    Nano Lett; 2005 Feb; 5(2):379-82. PubMed ID: 15794629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generalized fabrication of surfactant-stabilized anisotropic metal nanoparticles to amino-functionalized surfaces: application to surface-enhanced Raman spectroscopy.
    Wang C; Chen Y; Ma Z; Wang T; Su Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5887-95. PubMed ID: 19198322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchical nested-network nanostructure by dealloying.
    Qi Z; Weissmüller J
    ACS Nano; 2013 Jul; 7(7):5948-54. PubMed ID: 23789979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallinity dependence of the plasmon resonant Raman scattering by anisotropic gold nanocrystals.
    Portalès H; Goubet N; Saviot L; Yang P; Sirotkin S; Duval E; Mermet A; Pileni MP
    ACS Nano; 2010 Jun; 4(6):3489-97. PubMed ID: 20565142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PH-controlled two dimensional gold nanoparticle aggregates for systematic study of local surface plasmon coupling.
    Li X; Tamada K; Baba A; Hara M
    J Nanosci Nanotechnol; 2009 Jan; 9(1):408-16. PubMed ID: 19441327
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An in situ real-time x-ray diffraction study of phase segregation in Au-Pt nanoparticles.
    Malis O; Radu M; Mott D; Wanjala B; Luo J; Zhong CJ
    Nanotechnology; 2009 Jun; 20(24):245708. PubMed ID: 19471088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A surface phase transition of supported gold nanoparticles.
    Plech A; Cerna R; Kotaidis V; Hudert F; Bartels A; Dekorsy T
    Nano Lett; 2007 Apr; 7(4):1026-31. PubMed ID: 17352505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes.
    Rainò G; Stöferle T; Park C; Kim HC; Topuria T; Rice PM; Chin IJ; Miller RD; Mahrt RF
    ACS Nano; 2011 May; 5(5):3536-41. PubMed ID: 21534536
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymmetrically functionalized gold nanoparticles organized in one-dimensional chains.
    Sardar R; Shumaker-Parry JS
    Nano Lett; 2008 Feb; 8(2):731-6. PubMed ID: 18269261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-Tri(4-iodophenyl)benzene on Au(111).
    Eder G; Smith EF; Cebula I; Heckl WM; Beton PH; Lackinger M
    ACS Nano; 2013 Apr; 7(4):3014-21. PubMed ID: 23472582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of TiO2-Au composites by titania-nanorod-assisted generation of gold nanoparticles at aqueous/nonpolar interfaces.
    Cozzoli PD; Curri ML; Giannini C; Agostiano A
    Small; 2006 Mar; 2(3):413-21. PubMed ID: 17193061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties.
    Qian F; Brewster M; Lim SK; Ling Y; Greene C; Laboutin O; Johnson JW; Gradečak S; Cao Y; Li Y
    Nano Lett; 2012 Jun; 12(6):3344-50. PubMed ID: 22594533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colorimetric response of peptide-functionalized gold nanoparticles to metal ions.
    Slocik JM; Zabinski JS; Phillips DM; Naik RR
    Small; 2008 May; 4(5):548-51. PubMed ID: 18383577
    [No Abstract]   [Full Text] [Related]  

  • 60. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.