These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19995083)

  • 61. Glutathione-induced aggregation of gold nanoparticles: electromagnetic interactions in a closely packed assembly.
    Basu S; Pal T
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1904-10. PubMed ID: 17654963
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis of dendrimer-stabilized gold-polypyrrole core-shell nanoparticles.
    Bhattacharjee RR; Chakraborty M; Mandal TK
    J Nanosci Nanotechnol; 2003 Dec; 3(6):487-91. PubMed ID: 15002127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arrays of iso-oriented gold nanobelts.
    Chen Y; Milenkovic S; Hassel AW
    Nano Lett; 2008 Feb; 8(2):737-42. PubMed ID: 18269262
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Shape-dependent plasmon-resonant gold nanoparticles.
    Orendorff CJ; Sau TK; Murphy CJ
    Small; 2006 May; 2(5):636-9. PubMed ID: 17193100
    [No Abstract]   [Full Text] [Related]  

  • 65. Morphology and surface plasma changes of Au-Pt bimetallic nanoparticles.
    Chen HM; Peng HC; Liu RS; Hu SF; Sheu HS
    J Nanosci Nanotechnol; 2006 May; 6(5):1411-5. PubMed ID: 16792373
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Scanning tunneling microscopy study of titanium oxide nanocrystals prepared on Au(111) by reactive-layer-assisted deposition.
    Potapenko DV; Hrbek J; Osgood RM
    ACS Nano; 2008 Jul; 2(7):1353-62. PubMed ID: 19206302
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures.
    Sun Q; Wang Q; Jena P; Kawazoe Y
    ACS Nano; 2008 Feb; 2(2):341-7. PubMed ID: 19206636
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation.
    Baker SH; Roy M; Thornton SC; Qureshi M; Binns C
    J Phys Condens Matter; 2010 Sep; 22(38):385301. PubMed ID: 21386550
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stabilising agent specific synthesis of multi-branched and spherical au nanoparticles by reduction of AuCl4- by Fe2+ ions.
    Murugadoss A; Chattopadhyay A
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1730-5. PubMed ID: 17654931
    [TBL] [Abstract][Full Text] [Related]  

  • 70. OWL-based nanomasks for preparing graphene ribbons with sub-10 nm gaps.
    Zhou X; Shade CM; Schmucker AL; Brown KA; He S; Boey F; Ma J; Zhang H; Mirkin CA
    Nano Lett; 2012 Sep; 12(9):4734-7. PubMed ID: 22889421
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation of gold nanoparticles in an aqueous medium using 2-mercaptosuccinic acid as both reduction and capping agent.
    Vasilev K; Zhu T; Glasser G; Knoll W; Kreiter M
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2062-8. PubMed ID: 18572615
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stable single-crystalline body centered cubic Fe nanoparticles.
    Lacroix LM; Huls NF; Ho D; Sun X; Cheng K; Sun S
    Nano Lett; 2011 Apr; 11(4):1641-5. PubMed ID: 21417366
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A new route for mass production of uniform metal nanoparticles in water by means of laser light induced processes.
    Vogel F; Träger F; Hubenthal F
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2368-75. PubMed ID: 21449395
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates.
    Hu X; Wang T; Dong S
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2056-61. PubMed ID: 17025124
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fluorescence quenching of uranine on confeito-like Au nanoparticles.
    Ujihara M; Dang NM; Imae T
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4906-10. PubMed ID: 24757961
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Real-time monitoring and scale-up synthesis of concentrated gold nanorods.
    Cui J; Fan JB; Zhao T; Wang A; Drezek RA; Zhu MQ
    J Biomed Nanotechnol; 2009 Oct; 5(5):573-8. PubMed ID: 20201434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas.
    Zhang W; Huang L; Santschi C; Martin OJ
    Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Graphene decoration with metal nanoparticles: towards easy integration for sensing applications.
    Gutés A; Hsia B; Sussman A; Mickelson W; Zettl A; Carraro C; Maboudian R
    Nanoscale; 2012 Jan; 4(2):438-40. PubMed ID: 22147241
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity.
    Shi Y; Guo B; Corr SA; Shi Q; Hu YS; Heier KR; Chen L; Seshadri R; Stucky GD
    Nano Lett; 2009 Dec; 9(12):4215-20. PubMed ID: 19775084
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2-TiO2 sol-gel films.
    Venkatram N; Kumar RS; Rao DN; Medda SK; De S; De G
    J Nanosci Nanotechnol; 2006 Jul; 6(7):1990-4. PubMed ID: 17025114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.