BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 19995375)

  • 61. Dual roles of lineage restricted transcription factors: the case of MITF in melanocytes.
    Levy C; Fisher DE
    Transcription; 2011; 2(1):19-22. PubMed ID: 21326905
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking.
    Beaumont KA; Hamilton NA; Moores MT; Brown DL; Ohbayashi N; Cairncross O; Cook AL; Smith AG; Misaki R; Fukuda M; Taguchi T; Sturm RA; Stow JL
    Traffic; 2011 May; 12(5):627-43. PubMed ID: 21291502
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway.
    Zhang P; Liu W; Yuan X; Li D; Gu W; Gao T
    BMB Rep; 2013 Jul; 46(7):364-9. PubMed ID: 23884103
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation.
    Waku T; Nakada S; Masuda H; Sumi H; Wada A; Hirose S; Aketa I; Kobayashi A
    Cell Rep; 2023 Jan; 42(1):111906. PubMed ID: 36640303
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway.
    Kim MO; Park YS; Nho YH; Yun SK; Kim Y; Jung E; Paik JK; Kim M; Cho IH; Lee J
    Chem Biol Interact; 2016 Apr; 250():78-84. PubMed ID: 26972667
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation.
    Serre C; Busuttil V; Botto JM
    Int J Cosmet Sci; 2018 Aug; 40(4):328-347. PubMed ID: 29752874
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes.
    Carreira S; Liu B; Goding CR
    J Biol Chem; 2000 Jul; 275(29):21920-7. PubMed ID: 10770922
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma.
    Hida T; Kamiya T; Kawakami A; Ogino J; Sohma H; Uhara H; Jimbow K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32854423
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gpnmb is a melanoblast-expressed, MITF-dependent gene.
    Loftus SK; Antonellis A; Matera I; Renaud G; Baxter LL; Reid D; Wolfsberg TG; Chen Y; Wang C; ; Prasad MK; Bessling SL; McCallion AS; Green ED; Bennett DC; Pavan WJ
    Pigment Cell Melanoma Res; 2009 Feb; 22(1):99-110. PubMed ID: 18983539
    [TBL] [Abstract][Full Text] [Related]  

  • 70. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder.
    Roh E; Yun CY; Young Yun J; Park D; Doo Kim N; Yeon Hwang B; Jung SH; Park SK; Kim YB; Han SB; Kim Y
    J Invest Dermatol; 2013 Apr; 133(4):1072-9. PubMed ID: 23254773
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo.
    Manga P; Sheyn D; Yang F; Sarangarajan R; Boissy RE
    Am J Pathol; 2006 Nov; 169(5):1652-62. PubMed ID: 17071589
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wnt3a inhibits proliferation but promotes melanogenesis of melan-a cells.
    Guo H; Yang K; Deng F; Xing Y; Li Y; Lian X; Yang T
    Int J Mol Med; 2012 Sep; 30(3):636-42. PubMed ID: 22710324
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling of pigmentation disorders associated with MITF mutation in Waardenburg syndrome revealed an impaired melanogenesis pathway in iPS-derived melanocytes.
    Wen J; Song J; Chen J; Feng Z; Jing Q; Gong W; Kang X; Mei L; He C; Ma L; Feng Y
    Pigment Cell Melanoma Res; 2024 Jan; 37(1):21-35. PubMed ID: 37559350
    [TBL] [Abstract][Full Text] [Related]  

  • 74. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro.
    Wang X; Liu Y; Chen H; Mei L; He C; Jiang L; Niu Z; Sun J; Luo H; Li J; Feng Y
    PLoS One; 2015; 10(11):e0143142. PubMed ID: 26580798
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF.
    Kim KH; Lee TR; Cho EG
    Exp Mol Med; 2017 Aug; 49(8):e367. PubMed ID: 28819321
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Expression and transcriptional activity of alternative splice variants of Mitf exon 6.
    Murakami M; Iwata Y; Funaba M
    Mol Cell Biochem; 2007 Sep; 303(1-2):251-7. PubMed ID: 17457519
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf.
    Kumasaka M; Sato S; Yajima I; Goding CR; Yamamoto H
    Dev Dyn; 2005 Nov; 234(3):523-34. PubMed ID: 16028277
    [TBL] [Abstract][Full Text] [Related]  

  • 78. MITF: master regulator of melanocyte development and melanoma oncogene.
    Levy C; Khaled M; Fisher DE
    Trends Mol Med; 2006 Sep; 12(9):406-14. PubMed ID: 16899407
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport.
    Chiaverini C; Beuret L; Flori E; Busca R; Abbe P; Bille K; Bahadoran P; Ortonne JP; Bertolotto C; Ballotti R
    J Biol Chem; 2008 May; 283(18):12635-42. PubMed ID: 18281284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MITF, the Janus transcription factor of melanoma.
    Koludrovic D; Davidson I
    Future Oncol; 2013 Feb; 9(2):235-44. PubMed ID: 23414473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.