These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 19995454)
1. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. Melino VJ; Soole KL; Ford CM BMC Plant Biol; 2009 Dec; 9():145. PubMed ID: 19995454 [TBL] [Abstract][Full Text] [Related]
2. The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L. Melino VJ; Hayes MA; Soole KL; Ford CM J Sci Food Agric; 2011 Jul; 91(9):1712-21. PubMed ID: 21656772 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. Sweetman C; Wong DC; Ford CM; Drew DP BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855 [TBL] [Abstract][Full Text] [Related]
4. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
6. L-tartaric acid synthesis from vitamin C in higher plants. DeBolt S; Cook DR; Ford CM Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5608-13. PubMed ID: 16567629 [TBL] [Abstract][Full Text] [Related]
7. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
8. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. De Angeli A; Baetz U; Francisco R; Zhang J; Chaves MM; Regalado A Planta; 2013 Aug; 238(2):283-91. PubMed ID: 23645258 [TBL] [Abstract][Full Text] [Related]
9. Ascorbate as a biosynthetic precursor in plants. Debolt S; Melino V; Ford CM Ann Bot; 2007 Jan; 99(1):3-8. PubMed ID: 17098753 [TBL] [Abstract][Full Text] [Related]
10. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
11. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
12. Enrichment of grape berries and tomato fruit with health-promoting tartaric acid by expression of the Vitis vinifera transketolase VvTK2 gene. Su J; Li M; Yang H; Shu H; Yu K; Cao H; Xu G; Wang M; Zhu Y; Zhu Y; Ma C; Shao J Int J Biol Macromol; 2024 Feb; 257(Pt 2):128734. PubMed ID: 38086429 [TBL] [Abstract][Full Text] [Related]
13. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels. Gouthu S; Deluc LG BMC Plant Biol; 2015 Feb; 15():46. PubMed ID: 25848949 [TBL] [Abstract][Full Text] [Related]
14. Regulation of malate metabolism in grape berry and other developing fruits. Sweetman C; Deluc LG; Cramer GR; Ford CM; Soole KL Phytochemistry; 2009; 70(11-12):1329-44. PubMed ID: 19762054 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related]
18. Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. Cruz-Rus E; Botella MA; Valpuesta V; Gomez-Jimenez MC J Plant Physiol; 2010 Jun; 167(9):739-48. PubMed ID: 20189680 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening. Leng F; Tang D; Lin Q; Cao J; Wu D; Wang S; Sun C J Agric Food Chem; 2017 Mar; 65(9):2008-2016. PubMed ID: 28177240 [TBL] [Abstract][Full Text] [Related]
20. Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. He L; Meng N; Castellarin SD; Wang Y; Sun Q; Li XY; Dong ZG; Tang XP; Duan CQ; Pan QH Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]