BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19995581)

  • 1. The effect of short-term training on cardinal and oblique orientation discrimination: an ERP study.
    Song Y; Sun L; Wang Y; Zhang X; Kang J; Ma X; Yang B; Guan Y; Ding Y
    Int J Psychophysiol; 2010 Mar; 75(3):241-8. PubMed ID: 19995581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An event-related potential study on perceptual learning in grating orientation discrimination.
    Song Y; Peng D; Lu C; Liu C; Li X; Liu P; Qu Z; Ding Y
    Neuroreport; 2007 Jun; 18(9):945-8. PubMed ID: 17515807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task difficulty modulates electrophysiological correlates of perceptual learning.
    Wang Y; Song Y; Qu Z; Ding Y
    Int J Psychophysiol; 2010 Mar; 75(3):234-40. PubMed ID: 19969030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli.
    Yang B; Ma X; Schweinhart AM; Wang F; Sun M; Song Y
    Vision Res; 2012 May; 60():95-100. PubMed ID: 22483935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oblique effects beyond low-level visual processing.
    Heinrich SP; Aertsen A; Bach M
    Vision Res; 2008 Mar; 48(6):809-18. PubMed ID: 18249436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERP topography and human perceptual learning in the peripheral visual field.
    Shoji H; Skrandies W
    Int J Psychophysiol; 2006 Aug; 61(2):179-87. PubMed ID: 16356572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural substrates of visual perceptual learning of simple and complex stimuli.
    Song Y; Ding Y; Fan S; Qu Z; Xu L; Lu C; Peng D
    Clin Neurophysiol; 2005 Mar; 116(3):632-9. PubMed ID: 15721077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast independence of cardinal preference: stable oblique effect in orientation maps of ferret visual cortex.
    Grabska-Barwińska A; Distler C; Hoffmann KP; Jancke D
    Eur J Neurosci; 2009 Mar; 29(6):1258-70. PubMed ID: 19302161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological correlates of lateral interactions in human visual cortex.
    Khoe W; Freeman E; Woldorff MG; Mangun GR
    Vision Res; 2004; 44(14):1659-73. PubMed ID: 15136002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex.
    Ghisovan N; Nemri A; Shumikhina S; Molotchnikoff S
    Neuroscience; 2009 Dec; 164(3):1274-83. PubMed ID: 19747528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced and evoked neural correlates of orientation selectivity in human visual cortex.
    Koelewijn L; Dumont JR; Muthukumaraswamy SD; Rich AN; Singh KD
    Neuroimage; 2011 Feb; 54(4):2983-93. PubMed ID: 21112405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between attention and perceptual grouping in human visual cortex.
    Khoe W; Freeman E; Woldorff MG; Mangun GR
    Brain Res; 2006 Mar; 1078(1):101-11. PubMed ID: 16500628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological evidence for a post-perceptual influence of global visual context on perceived orientation.
    Corbett JE; Enns JT; Handy TC
    Brain Res; 2009 Oct; 1292():82-92. PubMed ID: 19632209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Mechanisms of Orientation Sensitivity of Human Vision System. Part II: Neural Patterns of Early Processing of Information about Line Orientation].
    Mikhailova ES; Gerasimenko NY; Krylova MA; Izyurov IV; Slavutskaya AV
    Fiziol Cheloveka; 2015; 41(3):5-18. PubMed ID: 26237944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural processing fate of singleton target and nontarget stimuli.
    Akyürek EG; Dinkelbach A; Schubö A
    Brain Res; 2010 Jan; 1307():115-33. PubMed ID: 19833112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational mechanisms of object constancy for visual recognition revealed by event-related potentials.
    Leek EC; Atherton CJ; Thierry G
    Vision Res; 2007 Mar; 47(5):706-13. PubMed ID: 17267003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychophysical and electrophysiological evidence of independent facilitation by collinearity and similarity in texture grouping and segmentation.
    Casco C; Campana G; Han S; Guzzon D
    Vision Res; 2009 Mar; 49(6):583-93. PubMed ID: 19948107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in orientation discrimination at the time of saccadic eye movements.
    Lee J; Lee C
    Vision Res; 2008 Sep; 48(21):2213-23. PubMed ID: 18625267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry of P3 amplitude during oddball tasks reflects the unnaturalness of visual stimuli.
    Minami T; Goto K; Kitazaki M; Nakauchi S
    Neuroreport; 2009 Oct; 20(16):1471-6. PubMed ID: 19786924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the electrophysiological correlates of retrieval cue processing by the specificity of task demands.
    Johnson JD; Rugg MD
    Brain Res; 2006 Feb; 1071(1):153-64. PubMed ID: 16413511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.