These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 19995752)
1. The role of cell-substrate interaction in regulating osteoclast activation: potential implications in targeting bone loss in rheumatoid arthritis. McHugh KP; Shen Z; Crotti TN; Flannery MR; O'Sullivan RP; Purdue PE; Goldring SR Ann Rheum Dis; 2010 Jan; 69 Suppl 1():i83-85. PubMed ID: 19995752 [TBL] [Abstract][Full Text] [Related]
2. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Gravallese EM; Manning C; Tsay A; Naito A; Pan C; Amento E; Goldring SR Arthritis Rheum; 2000 Feb; 43(2):250-8. PubMed ID: 10693863 [TBL] [Abstract][Full Text] [Related]
3. Bone and joint destruction in rheumatoid arthritis: what is really happening? Goldring SR J Rheumatol Suppl; 2002 Sep; 65():44-8. PubMed ID: 12236623 [TBL] [Abstract][Full Text] [Related]
4. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Pettit AR; Walsh NC; Manning C; Goldring SR; Gravallese EM Rheumatology (Oxford); 2006 Sep; 45(9):1068-76. PubMed ID: 16490750 [TBL] [Abstract][Full Text] [Related]
5. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Jimi E; Aoki K; Saito H; D'Acquisto F; May MJ; Nakamura I; Sudo T; Kojima T; Okamoto F; Fukushima H; Okabe K; Ohya K; Ghosh S Nat Med; 2004 Jun; 10(6):617-24. PubMed ID: 15156202 [TBL] [Abstract][Full Text] [Related]
6. Involvement of a disintegrin and a metalloproteinase 8 (ADAM8) in osteoclastogenesis and pathological bone destruction. Ainola M; Li TF; Mandelin J; Hukkanen M; Choi SJ; Salo J; Konttinen YT Ann Rheum Dis; 2009 Mar; 68(3):427-34. PubMed ID: 18397961 [TBL] [Abstract][Full Text] [Related]
7. Synovial fluid macrophages are capable of osteoclast formation and resorption. Adamopoulos IE; Sabokbar A; Wordsworth BP; Carr A; Ferguson DJ; Athanasou NA J Pathol; 2006 Jan; 208(1):35-43. PubMed ID: 16278818 [TBL] [Abstract][Full Text] [Related]
8. Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin. Hase H; Kanno Y; Kojima H; Sakurai D; Kobata T Arthritis Rheum; 2008 Nov; 58(11):3356-65. PubMed ID: 18975335 [TBL] [Abstract][Full Text] [Related]
9. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Tanaka S Am J Nephrol; 2007; 27(5):466-78. PubMed ID: 17652963 [TBL] [Abstract][Full Text] [Related]
10. CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. Grassi F; Cristino S; Toneguzzi S; Piacentini A; Facchini A; Lisignoli G J Cell Physiol; 2004 May; 199(2):244-51. PubMed ID: 15040007 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Martin TJ; Ng KW J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329 [TBL] [Abstract][Full Text] [Related]
12. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Goldring SR Rheumatology (Oxford); 2003 May; 42 Suppl 2():ii11-6. PubMed ID: 12817090 [TBL] [Abstract][Full Text] [Related]
13. The increased in vitro osteoclastogenesis in patients with rheumatoid arthritis is due to increased percentage of precursors and decreased apoptosis - the In Vitro Osteoclast Differentiation in Arthritis (IODA) study. Durand M; Boire G; Komarova SV; Dixon SJ; Sims SM; Harrison RE; Nabavi N; Maria O; Manolson MF; Mizianty M; Kurgan L; de Brum-Fernandes AJ Bone; 2011 Mar; 48(3):588-96. PubMed ID: 20959150 [TBL] [Abstract][Full Text] [Related]
15. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Edwards JR; Sun SG; Locklin R; Shipman CM; Adamopoulos IE; Athanasou NA; Sabokbar A Arthritis Rheum; 2006 May; 54(5):1451-62. PubMed ID: 16649193 [TBL] [Abstract][Full Text] [Related]
16. Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction. Zwerina J; Hayer S; Redlich K; Bobacz K; Kollias G; Smolen JS; Schett G Arthritis Rheum; 2006 Feb; 54(2):463-72. PubMed ID: 16447221 [TBL] [Abstract][Full Text] [Related]
17. Rheumatic diseases: the effects of inflammation on bone. Walsh NC; Crotti TN; Goldring SR; Gravallese EM Immunol Rev; 2005 Dec; 208():228-51. PubMed ID: 16313352 [TBL] [Abstract][Full Text] [Related]
18. Pathogenesis of bone lesions in rheumatoid arthritis. Goldring SR; Gravallese EM Curr Rheumatol Rep; 2002 Jun; 4(3):226-31. PubMed ID: 12010607 [TBL] [Abstract][Full Text] [Related]
19. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Sato K; Takayanagi H Curr Opin Rheumatol; 2006 Jul; 18(4):419-26. PubMed ID: 16763464 [TBL] [Abstract][Full Text] [Related]
20. The role of interleukin-1 in bone resorption in rheumatoid arthritis. Strand V; Kavanaugh AF Rheumatology (Oxford); 2004 Jun; 43 Suppl 3():iii10-iii16. PubMed ID: 15150427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]