BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 19996087)

  • 21. The N-terminal domain of the Drosophila retinoblastoma protein Rbf1 interacts with ORC and associates with chromatin in an E2F independent manner.
    Ahlander J; Chen XB; Bosco G
    PLoS One; 2008 Jul; 3(7):e2831. PubMed ID: 18665226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3.
    Mimura S; Kubota Y; Takisawa H
    Cell Cycle; 2018; 17(4):492-505. PubMed ID: 29261034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome.
    Misulovin Z; Schwartz YB; Li XY; Kahn TG; Gause M; MacArthur S; Fay JC; Eisen MB; Pirrotta V; Biggin MD; Dorsett D
    Chromosoma; 2008 Feb; 117(1):89-102. PubMed ID: 17965872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutations in the heterochromatin protein 1 (HP1) hinge domain affect HP1 protein interactions and chromosomal distribution.
    Badugu R; Yoo Y; Singh PB; Kellum R
    Chromosoma; 2005 Feb; 113(7):370-84. PubMed ID: 15592864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo.
    Fasulo B; Deuring R; Murawska M; Gause M; Dorighi KM; Schaaf CA; Dorsett D; Brehm A; Tamkun JW
    PLoS Genet; 2012; 8(8):e1002878. PubMed ID: 22912596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication.
    Speck C; Stillman B
    J Biol Chem; 2007 Apr; 282(16):11705-14. PubMed ID: 17314092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication.
    Beall EL; Manak JR; Zhou S; Bell M; Lipsick JS; Botchan MR
    Nature; 2002 Dec 19-26; 420(6917):833-7. PubMed ID: 12490953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The origin recognition complex marks a replication origin in the human TOP1 gene promoter.
    Keller C; Ladenburger EM; Kremer M; Knippers R
    J Biol Chem; 2002 Aug; 277(35):31430-40. PubMed ID: 12004060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts.
    Edwards MC; Tutter AV; Cvetic C; Gilbert CH; Prokhorova TA; Walter JC
    J Biol Chem; 2002 Sep; 277(36):33049-57. PubMed ID: 12087101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements.
    Bredesen BA; Rehmsmeier M
    Nucleic Acids Res; 2019 Sep; 47(15):7781-7797. PubMed ID: 31340029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus.
    Kylie K; Romero J; Lindamulage IK; Knockleby J; Lee H
    Cell Cycle; 2016 Sep; 15(17):2321-35. PubMed ID: 27341472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cohesin occupancy and composition at enhancers and promoters are linked to DNA replication origin proximity in
    Pherson M; Misulovin Z; Gause M; Dorsett D
    Genome Res; 2019 Apr; 29(4):602-612. PubMed ID: 30796039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements.
    Chang F; May CD; Hoggard T; Miller J; Fox CA; Weinreich M
    Nucleic Acids Res; 2011 Aug; 39(15):6523-35. PubMed ID: 21558171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly.
    Belsky JA; MacAlpine HK; Lubelsky Y; Hartemink AJ; MacAlpine DM
    Genes Dev; 2015 Jan; 29(2):212-24. PubMed ID: 25593310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replication origin-flanking roadblocks reveal origin-licensing dynamics and altered sequence dependence.
    Warner MD; Azmi IF; Kang S; Zhao Y; Bell SP
    J Biol Chem; 2017 Dec; 292(52):21417-21430. PubMed ID: 29074622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin signatures of the Drosophila replication program.
    Eaton ML; Prinz JA; MacAlpine HK; Tretyakov G; Kharchenko PV; MacAlpine DM
    Genome Res; 2011 Feb; 21(2):164-74. PubMed ID: 21177973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex.
    Takahashi TS; Yiu P; Chou MF; Gygi S; Walter JC
    Nat Cell Biol; 2004 Oct; 6(10):991-6. PubMed ID: 15448702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin.
    Romanowski P; Madine MA; Rowles A; Blow JJ; Laskey RA
    Curr Biol; 1996 Nov; 6(11):1416-25. PubMed ID: 8939603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-Specific DNA Replication Defects in
    McDaniel SL; Hollatz AJ; Branstad AM; Gaskill MM; Fox CA; Harrison MM
    Genetics; 2020 Feb; 214(2):355-367. PubMed ID: 31818869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation.
    Paranjape NP; Calvi BR
    G3 (Bethesda); 2016 Jun; 6(6):1661-71. PubMed ID: 27172191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.