These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19996165)

  • 1. Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana.
    Kiddle SJ; Windram OP; McHattie S; Mead A; Beynon J; Buchanan-Wollaston V; Denby KJ; Mukherjee S
    Bioinformatics; 2010 Feb; 26(3):355-62. PubMed ID: 19996165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment constrained time-dependent clustering analysis for finding meaningful temporal transcription modules.
    Meng J; Gao SJ; Huang Y
    Bioinformatics; 2009 Jun; 25(12):1521-7. PubMed ID: 19351618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring transcriptional logic from multiple dynamic experiments.
    Minas G; Jenkins DJ; Rand DA; Finkenstädt B
    Bioinformatics; 2017 Nov; 33(21):3437-3444. PubMed ID: 28666320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments.
    Liu T; Lin N; Shi N; Zhang B
    BMC Bioinformatics; 2009 May; 10():146. PubMed ID: 19445669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A temporal precedence based clustering method for gene expression microarray data.
    Krishna R; Li CT; Buchanan-Wollaston V
    BMC Bioinformatics; 2010 Jan; 11():68. PubMed ID: 20113513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.
    Ma C; Wang X
    Plant Physiol; 2012 Sep; 160(1):192-203. PubMed ID: 22797655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting gene regulatory networks by combining spatial and temporal gene expression data in
    de Luis Balaguer MA; Fisher AP; Clark NM; Fernandez-Espinosa MG; Möller BK; Weijers D; Lohmann JU; Williams C; Lorenzo O; Sozzani R
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7632-E7640. PubMed ID: 28827319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defining transcription modules using large-scale gene expression data.
    Ihmels J; Bergmann S; Barkai N
    Bioinformatics; 2004 Sep; 20(13):1993-2003. PubMed ID: 15044247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes.
    Maulik U; Mukhopadhyay A; Bandyopadhyay S
    BMC Bioinformatics; 2009 Jan; 10():27. PubMed ID: 19154590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis gene co-expression network and its functional modules.
    Mao L; Van Hemert JL; Dash S; Dickerson JA
    BMC Bioinformatics; 2009 Oct; 10():346. PubMed ID: 19845953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating large-scale Arabidopsis microarray expression data: identifying dominant expression patterns and biological process enrichment.
    Orlando DA; Brady SM; Koch JD; Dinneny JR; Benfey PN
    Methods Mol Biol; 2009; 553():57-77. PubMed ID: 19588101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive quality-based clustering of gene expression profiles.
    De Smet F; Mathys J; Marchal K; Thijs G; De Moor B; Moreau Y
    Bioinformatics; 2002 May; 18(5):735-46. PubMed ID: 12050070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation).
    Aryee MJ; Gutiérrez-Pabello JA; Kramnik I; Maiti T; Quackenbush J
    BMC Bioinformatics; 2009 Dec; 10():409. PubMed ID: 20003283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KIRMES: kernel-based identification of regulatory modules in euchromatic sequences.
    Schultheiss SJ; Busch W; Lohmann JU; Kohlbacher O; Rätsch G
    Bioinformatics; 2009 Aug; 25(16):2126-33. PubMed ID: 19389732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling complex temporal associations in cellular systems across multiple time-series microarray datasets.
    Li W; Xu M; Zhou XJ
    J Biomed Inform; 2010 Aug; 43(4):550-9. PubMed ID: 20083231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach.
    de Luis Balaguer MA; Sozzani R
    Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian model-based clustering of temporal gene expression using autoregressive panel data approach.
    Nascimento M; Sáfadi T; Fonseca e Silva F; Nascimento AC
    Bioinformatics; 2012 Aug; 28(15):2004-7. PubMed ID: 22668790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.