These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1999700)

  • 1. Low perfusion pressure or interruption of blood flow suppresses electroencephalographic activity?
    Urzua J
    J Clin Monit; 1991 Jan; 7(1):68. PubMed ID: 1999700
    [No Abstract]   [Full Text] [Related]  

  • 2. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery.
    Newburger JW; Jonas RA; Wernovsky G; Wypij D; Hickey PR; Kuban KC; Farrell DM; Holmes GL; Helmers SL; Constantinou J; Carrazana E; Barlow JK; Walsh AZ; Lucius KC; Share JC; Wessel DL; Hanley FL; Mayer JE; Costaneda AR; Ware JH
    N Engl J Med; 1993 Oct; 329(15):1057-64. PubMed ID: 8371727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass.
    Arom KV; Cohen DE; Strobl FT
    Ann Thorac Surg; 1989 Oct; 48(4):476-83. PubMed ID: 2802848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonpulsatile cardiopulmonary bypass disrupts the flow-metabolism couple in the brain.
    Andersen K; Waaben J; Husum B; Voldby B; Bødker A; Hansen AJ; Gjedde A
    J Thorac Cardiovasc Surg; 1985 Oct; 90(4):570-9. PubMed ID: 4046623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromonitoring in the cardiopulmonary bypass surgical patient: clinical applications.
    Moehle DA
    J Extra Corpor Technol; 2001 May; 33(2):126-34. PubMed ID: 11467440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting circulatory arrest using regional low flow perfusion.
    Kilpack VD; Stayer SA; McKenzie ED; Fraser CD; Andropoulos DB
    J Extra Corpor Technol; 2004 Jun; 36(2):133-8. PubMed ID: 15334752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of pulsatile cardiopulmonary bypass on cerebral and renal blood flow in dogs.
    Cook DJ; Orszulak TA; Daly RC
    J Cardiothorac Vasc Anesth; 1997 Jun; 11(4):420-7. PubMed ID: 9187988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cerebral blood flow rate during cardiopulmonary bypass and optimal cerebral perfusion flow rate during separated brain perfusion--a clinical study].
    Hirotani T
    Nihon Kyobu Geka Gakkai Zasshi; 1989 Apr; 37(4):591-9. PubMed ID: 2671192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional muscle tissue saturation is an indicator of global inadequate circulation during cardiopulmonary bypass: a randomized porcine study using muscle, intestinal and brain tissue metabolomics.
    Thomassen SA; Kjærgaard B; Sørensen P; Andreasen JJ; Larsson A; Rasmussen BS
    Perfusion; 2017 Apr; 32(3):192-199. PubMed ID: 28327077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral surveillance during cardiac surgery.
    Salerno TA; Lynn RB; White DN; Charrette EJ
    Can J Surg; 1979 Jul; 22(4):325-6. PubMed ID: 455161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal perfusion flow rate for the brain during deep hypothermic cardiopulmonary bypass at 20 degrees C. An experimental study.
    Miyamoto K; Kawashima Y; Matsuda H; Okuda A; Maeda S; Hirose H
    J Thorac Cardiovasc Surg; 1986 Dec; 92(6):1065-70. PubMed ID: 3784587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchy of regional oxygen delivery during cardiopulmonary bypass.
    Boston US; Slater JM; Orszulak TA; Cook DJ
    Ann Thorac Surg; 2001 Jan; 71(1):260-4. PubMed ID: 11216758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures.
    Mezrow CK; Midulla PS; Sadeghi AM; Gandsas A; Wang W; Dapunt OE; Zappulla R; Griepp RB
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1006-19. PubMed ID: 8159021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion pressure and electroencephalographic changes during cardiopulmonary bypass.
    Jones BR; Scheller MS
    J Clin Monit; 1989 Oct; 5(4):288. PubMed ID: 2809675
    [No Abstract]   [Full Text] [Related]  

  • 16. Regional perfusion abnormalities with phenylephrine during normothermic bypass.
    O'Dwyer C; Woodson LC; Conroy BP; Lin CY; Deyo DJ; Uchida T; Johnston WE
    Ann Thorac Surg; 1997 Mar; 63(3):728-35. PubMed ID: 9066392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of pulsatile perfusion during cardiopulmonary bypass procedures by radial artery pressure and waveform: the preliminary evaluation].
    Guo Z; Li X; Xu LF
    Zhonghua Wai Ke Za Zhi; 2009 Dec; 47(23):1801-4. PubMed ID: 20193551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalographic changes with hypothermia and cardiopulmonary bypass in children.
    Hicks RG; Poole JL
    J Thorac Cardiovasc Surg; 1981 May; 81(5):781-6. PubMed ID: 7218845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed venous oxygen saturation does not adequately predict cerebral perfusion during pediatric cardiopulmonary bypass.
    Yeh T; Gouldman J; Auden SM; Seremet V; Edmonds HL; Cerrito PB; Austin EH
    J Thorac Cardiovasc Surg; 2001 Jul; 122(1):192-3. PubMed ID: 11436060
    [No Abstract]   [Full Text] [Related]  

  • 20. Transcranial Doppler monitoring of cerebral perfusion during cardiopulmonary bypass.
    Burrows FA
    Ann Thorac Surg; 1993 Dec; 56(6):1482-4. PubMed ID: 8267473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.