These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1999727)

  • 1. Spatial distribution of nociceptive processing in the rat spinal cord.
    Coghill RC; Price DD; Hayes RL; Mayer DJ
    J Neurophysiol; 1991 Jan; 65(1):133-40. PubMed ID: 1999727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of spatial recruitment and discharge frequency in spinal cord coding of pain: a combined electrophysiological and imaging investigation.
    Coghill RC; Mayer DJ; Price DD
    Pain; 1993 Jun; 53(3):295-309. PubMed ID: 8351159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial patterns of spinal cord [14C]-2-deoxyglucose metabolic activity in a rat model of painful peripheral mononeuropathy.
    Mao J; Price DD; Coghill RC; Mayer DJ; Hayes RL
    Pain; 1992 Jul; 50(1):89-100. PubMed ID: 1325049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatotopy of spinal nociceptive processing.
    Bullitt E
    J Comp Neurol; 1991 Oct; 312(2):279-90. PubMed ID: 1748733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial patterns of increased spinal cord membrane-bound protein kinase C and their relation to increases in 14C-2-deoxyglucose metabolic activity in rats with painful peripheral mononeuropathy.
    Mao J; Mayer DJ; Hayes RL; Price DD
    J Neurophysiol; 1993 Aug; 70(2):470-81. PubMed ID: 8410149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation.
    Menétrey D; Gannon A; Levine JD; Basbaum AI
    J Comp Neurol; 1989 Jul; 285(2):177-95. PubMed ID: 2503547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    J Neurophysiol; 1992 Jun; 67(6):1599-614. PubMed ID: 1352804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spinal nociceptive transmission from nuclei tractus solitarii: a relay for effects of vagal afferent stimulation.
    Ren K; Randich A; Gebhart GF
    J Neurophysiol; 1990 May; 63(5):971-86. PubMed ID: 1972739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of biphasic modulation of spinal nociceptive transmission by neurotensin in the rat rostral ventromedial medulla.
    Urban MO; Gebhart GF
    J Neurophysiol; 1997 Sep; 78(3):1550-62. PubMed ID: 9310442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic activity changes in the rat spinal cord during adjuvant monoarthritis.
    Schadrack J; Neto FL; Ableitner A; Castro-Lopes JM; Willoch F; Bartenstein P; Zieglgänsberger W; Tölle TR
    Neuroscience; 1999; 94(2):595-605. PubMed ID: 10579220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1986 Nov; 56(5):1397-410. PubMed ID: 3025380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional activity mapping of the rat spinal cord during formalin-induced noxious stimulation.
    Porro CA; Cavazzuti M; Galetti A; Sassatelli L; Barbieri GC
    Neuroscience; 1991; 41(2-3):655-65. PubMed ID: 1870703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative characterization and spinal pathway mediating inhibition of spinal nociceptive transmission from the lateral reticular nucleus in the rat.
    Janss AJ; Gebhart GF
    J Neurophysiol; 1988 Jan; 59(1):226-47. PubMed ID: 2893831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of intrathecal BAM22 on noxious stimulus-evoked c-fos expression in the rat spinal dorsal horn.
    Zeng X; Huang H; Hong Y
    Brain Res; 2004 Dec; 1028(2):170-9. PubMed ID: 15527742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the caudal medulla in negative feedback mechanisms triggered by spatial summation of nociceptive inputs.
    Gall O; Bouhassira D; Chitour D; Le Bars D
    J Neurophysiol; 1998 Jan; 79(1):304-11. PubMed ID: 9425199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative comparison of inhibition of visceral and cutaneous spinal nociceptive transmission from the midbrain and medulla in the rat.
    Ness TJ; Gebhart GF
    J Neurophysiol; 1987 Oct; 58(4):850-65. PubMed ID: 2824712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide dynamic range but not nociceptive-specific neurons encode multidimensional features of prolonged repetitive heat pain.
    Coghill RC; Mayer DJ; Price DD
    J Neurophysiol; 1993 Mar; 69(3):703-16. PubMed ID: 8385190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of midbrain control of spinal nociceptive neurons and nonsomatosensory parameters in the pentobarbital-anesthetized rat.
    Sandkühler J; Willmann E; Fu QG
    J Neurophysiol; 1991 Jan; 65(1):33-48. PubMed ID: 1999730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventrolateral and dorsolateral ascending spinal cord pathway influence on thalamic nociception in cat.
    Martin RJ; Apkarian AV; Hodge CJ
    J Neurophysiol; 1990 Nov; 64(5):1400-12. PubMed ID: 2178182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.