BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19997302)

  • 1. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
    Oh GY; Kim DG; Choi YW
    Opt Express; 2009 Nov; 17(23):20714-20. PubMed ID: 19997302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.
    Wan Y; Zheng Z; Zhu J
    Opt Express; 2009 Nov; 17(23):21313-9. PubMed ID: 19997370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes.
    Chien FC; Chen SJ
    Biosens Bioelectron; 2004 Oct; 20(3):633-42. PubMed ID: 15494249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance: theoretical evolutionary design optimization for a model analyte sensitive absorbing-layer system.
    Rooney JM; Hall EA
    Anal Chem; 2004 Dec; 76(23):6861-70. PubMed ID: 15571334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of complex plasmonic circuits including bends.
    Dellagiacoma C; Lasser T; Martin OJ; Degiron A; Mock JJ; Smith DR
    Opt Express; 2011 Sep; 19(20):18979-88. PubMed ID: 21996839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low bending loss metal waveguide embedded in a free-standing multilayered polymer film.
    Lee JM; Park S; Kim MS; Park SK; Kim JT; Choe JS; Lee WJ; Lee MH; Ju JJ
    Opt Express; 2009 Jan; 17(1):228-34. PubMed ID: 19129892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration.
    Bian Y; Zheng Z; Zhao X; Zhu J; Zhou T
    Opt Express; 2009 Nov; 17(23):21320-5. PubMed ID: 19997371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating.
    Chien FC; Lin CY; Yih JN; Lee KL; Chang CW; Wei PK; Sun CC; Chen SJ
    Biosens Bioelectron; 2007 May; 22(11):2737-42. PubMed ID: 17178218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon reflector based on serial stub structure.
    Liu J; Fang G; Zhao H; Zhang Y; Liu S
    Opt Express; 2009 Oct; 17(22):20134-9. PubMed ID: 19997237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry dependence of field enhancement in 2D metallic photonic crystals.
    Paudel HP; Bayat K; Baroughi MF; May S; Galipeau DW
    Opt Express; 2009 Nov; 17(24):22179-89. PubMed ID: 19997464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.
    DiPippo W; Lee BJ; Park K
    Opt Express; 2010 Aug; 18(18):19396-406. PubMed ID: 20940835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of optical waveguides with ultra-thin metal film based on the multidomain pseudospectral frequency-domain method.
    Chiang PJ; Chiang YC; Sun NH; Hong SX
    Opt Express; 2011 Feb; 19(5):4324-36. PubMed ID: 21369263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection.
    Huang JG; Lee CL; Lin HM; Chuang TL; Wang WS; Juang RH; Wang CH; Lee CK; Lin SM; Lin CW
    Biosens Bioelectron; 2006 Oct; 22(4):519-25. PubMed ID: 16962763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide.
    Fang Z; Huang S; Lin F; Zhu X
    Opt Express; 2009 Oct; 17(22):20327-32. PubMed ID: 19997260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-optic surface plasmon resonance for vapor phase analyses.
    Kim YC; Banerji S; Masson JF; Peng W; Booksh KS
    Analyst; 2005 Jun; 130(6):838-43. PubMed ID: 15912230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated-optic biosensor by electro-optically modulated surface plasmon resonance.
    Wang TJ; Lin WS; Liu FK
    Biosens Bioelectron; 2007 Feb; 22(7):1441-6. PubMed ID: 16876989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.
    Lu H; Liu X; Mao D; Wang L; Gong Y
    Opt Express; 2010 Aug; 18(17):17922-7. PubMed ID: 20721178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Appl Spectrosc; 2005 May; 59(5):661-7. PubMed ID: 15969812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.