BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 19997357)

  • 1. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and design of nano-plasmonic structures using transmission line modeling.
    Ahmed OS; Swillam MA; Bakr MH; Li X
    Opt Express; 2010 Oct; 18(21):21784-97. PubMed ID: 20941079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.
    Guo LX; Li J; Zeng H
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2383-92. PubMed ID: 19884936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A level-set procedure for the design of electromagnetic metamaterials.
    Zhou S; Li W; Sun G; Li Q
    Opt Express; 2010 Mar; 18(7):6693-702. PubMed ID: 20389692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfectly matched layer absorption boundary condition in planewave based transfer-scattering matrix method for photonic crystal device simulation.
    Li M; Hu X; Ye Z; Ho KM; Cao J; Miyawaki M
    Opt Express; 2008 Jul; 16(15):11548-54. PubMed ID: 18648476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional elliptical electromagnetic superscatterer and superabsorber.
    Zang X; Jiang C
    Opt Express; 2010 Mar; 18(7):6891-9. PubMed ID: 20389709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses.
    Simicevic N
    Phys Med Biol; 2005 Nov; 50(21):5041-53. PubMed ID: 16237240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative refraction in semiconductor metamaterials.
    Hoffman AJ; Alekseyev L; Howard SS; Franz KJ; Wasserman D; Podolskiy VA; Narimanov EE; Sivco DL; Gmachl C
    Nat Mater; 2007 Dec; 6(12):946-50. PubMed ID: 17934463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography.
    Tanifuji T; Hijikata M
    IEEE Trans Med Imaging; 2002 Feb; 21(2):181-4. PubMed ID: 11929105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.
    Stoykov NS; Kuiken TA; Lowery MM; Taflove A
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1100-7. PubMed ID: 12943277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective optical response of silicon to sunlight in the finite-difference time-domain method.
    Deinega A; John S
    Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies.
    Baumann D; Fumeaux C; Hafner C; Li EP
    Opt Express; 2009 Aug; 17(17):15186-200. PubMed ID: 19687997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI--applications to high field analyses.
    Wei Q; Liu F; Xia L; Crozier S
    J Magn Reson; 2005 Feb; 172(2):222-30. PubMed ID: 15649749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in calculated SAR with distance to the perfectly matched layer boundary for a human voxel model.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 Dec; 51(23):N411-5. PubMed ID: 17110758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.