BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19998358)

  • 21. Increasing protein stability through control of the nanoscale environment.
    Asuri P; Karajanagi SS; Yang H; Yim TJ; Kane RS; Dordick JS
    Langmuir; 2006 Jun; 22(13):5833-6. PubMed ID: 16768515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying and counting point defects in carbon nanotubes.
    Fan Y; Goldsmith BR; Collins PG
    Nat Mater; 2005 Dec; 4(12):906-11. PubMed ID: 16267574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soluble ultra-short single-walled carbon nanotubes.
    Chen Z; Kobashi K; Rauwald U; Booker R; Fan H; Hwang WF; Tour JM
    J Am Chem Soc; 2006 Aug; 128(32):10568-71. PubMed ID: 16895425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.
    Takenobu T; Takano T; Shiraishi M; Murakami Y; Ata M; Kataura H; Achiba Y; Iwasa Y
    Nat Mater; 2003 Oct; 2(10):683-8. PubMed ID: 12958593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope.
    Albrecht PM; Lyding JW
    Small; 2007 Jan; 3(1):146-52. PubMed ID: 17294486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions.
    Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS
    Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of aromatic content for peptide/single-walled carbon nanotube interactions.
    Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH
    J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.
    Manoharan MP; Sharma A; Desai AV; Haque MA; Bakis CE; Wang KW
    Nanotechnology; 2009 Jul; 20(29):295701. PubMed ID: 19567949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled growth and characterization of two-dimensional single-walled carbon-nanotube networks for electrical applications.
    Edgeworth JP; Wilson NR; Macpherson JV
    Small; 2007 May; 3(5):860-70. PubMed ID: 17429817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of electron-donating and electron-withdrawing groups on peptide/single-walled carbon nanotube interactions.
    Poenitzsch VZ; Winters DC; Xie H; Dieckmann GR; Dalton AB; Musselman IH
    J Am Chem Soc; 2007 Nov; 129(47):14724-32. PubMed ID: 17985894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates.
    Wang X; Li Q; Zheng G; Ren Y; Jiang K; Fan S
    Nanotechnology; 2010 Oct; 21(39):395602. PubMed ID: 20808038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of single-walled carbon nanotubes from sharp metal tips.
    Rodríguez-Manzo JA; Janowska I; Pham-Huu C; Tolvanen A; Krasheninnikov AV; Nordlund K; Banhart F
    Small; 2009 Dec; 5(23):2710-5. PubMed ID: 19743432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes.
    Zurek E; Autschbach J
    J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.