These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19998362)

  • 1. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol.
    Zheng MY; Wang AQ; Ji N; Pang JF; Wang XD; Zhang T
    ChemSusChem; 2010; 3(1):63-6. PubMed ID: 19998362
    [No Abstract]   [Full Text] [Related]  

  • 2. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts.
    Ji N; Zhang T; Zheng M; Wang A; Wang H; Wang X; Chen JG
    Angew Chem Int Ed Engl; 2008; 47(44):8510-3. PubMed ID: 18785670
    [No Abstract]   [Full Text] [Related]  

  • 3. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.
    Tai Z; Zhang J; Wang A; Zheng M; Zhang T
    Chem Commun (Camb); 2012 Jul; 48(56):7052-4. PubMed ID: 22678506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.
    Zhang Y; Wang A; Zhang T
    Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid.
    Tai Z; Zhang J; Wang A; Pang J; Zheng M; Zhang T
    ChemSusChem; 2013 Apr; 6(4):652-8. PubMed ID: 23460602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst.
    Liu Y; Luo C; Liu H
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071
    [No Abstract]   [Full Text] [Related]  

  • 8. Nickel-promoted tungsten carbide catalysts for cellulose conversion: effect of preparation methods.
    Ji N; Zheng M; Wang A; Zhang T; Chen JG
    ChemSusChem; 2012 May; 5(5):939-44. PubMed ID: 22467346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.
    Pang J; Zheng M; Sun R; Song L; Wang A; Wang X; Zhang T
    Bioresour Technol; 2015 Jan; 175():424-9. PubMed ID: 25459851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules.
    Huang YB; Chen MY; Yan L; Guo QX; Fu Y
    ChemSusChem; 2014 Apr; 7(4):1068-72. PubMed ID: 24574062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts.
    Ribeiro LS; Órfão JJM; Pereira MFR
    Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates.
    Cao X; Peng X; Sun S; Zhong L; Chen W; Wang S; Sun RC
    Carbohydr Polym; 2015 Mar; 118():44-51. PubMed ID: 25542106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing metal-free catalysts by mimicking transition-metal pincer templates.
    Lu G; Li H; Zhao L; Huang F; Schleyer Pv; Wang ZX
    Chemistry; 2011 Feb; 17(7):2038-43. PubMed ID: 21294173
    [No Abstract]   [Full Text] [Related]  

  • 15. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts.
    Kobayashi H; Matsuhashi H; Komanoya T; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Feb; 47(8):2366-8. PubMed ID: 21161096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.
    Liu W; Mu W; Deng Y
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13558-62. PubMed ID: 25283435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamate-Mediated Catalytic Hydrogenation.
    Satapathy A; Gadge ST; Bhanage BM
    ChemSusChem; 2017 Apr; 10(7):1356-1359. PubMed ID: 28218500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane.
    Wannakao S; Artrith N; Limtrakul J; Kolpak AM
    ChemSusChem; 2015 Aug; 8(16):2745-51. PubMed ID: 26219085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose conversion with tungstated-alumina-based catalysts: influence of the presence of platinum and mechanistic studies.
    Chambon F; Rataboul F; Pinel C; Cabiac A; Guillon E; Essayem N
    ChemSusChem; 2013 Mar; 6(3):500-7. PubMed ID: 23427047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.