BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19998396)

  • 1. Through-bond energy transfer cassettes with minimal spectral overlap between the donor emission and acceptor absorption: coumarin-rhodamine dyads with large pseudo-Stokes shifts and emission shifts.
    Lin W; Yuan L; Cao Z; Feng Y; Song J
    Angew Chem Int Ed Engl; 2010; 49(2):375-9. PubMed ID: 19998396
    [No Abstract]   [Full Text] [Related]  

  • 2. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays.
    Rantanen T; Päkkilä H; Jämsen L; Kuningas K; Ukonaho T; Lövgren T; Soukka T
    Anal Chem; 2007 Aug; 79(16):6312-8. PubMed ID: 17628044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations of structure and rates of energy transfer for through-bond energy-transfer cassettes.
    Kim TG; Castro JC; Loudet A; Jiao JG; Hochstrasser RM; Burgess K; Topp MR
    J Phys Chem A; 2006 Jan; 110(1):20-7. PubMed ID: 16392835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of symmetrical multichromophoric Bodipy dyes and their facile transformation into energy transfer cassettes.
    Bozdemir OA; Cakmak Y; Sozmen F; Ozdemir T; Siemiarczuk A; Akkaya EU
    Chemistry; 2010 Jun; 16(21):6346-51. PubMed ID: 20401877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy- and charge-transfer processes in flexible organic donor-acceptor dyads.
    Hofmann CC; Bauer P; Haque SA; Thelakkat M; Köhler J
    J Chem Phys; 2009 Oct; 131(14):144512. PubMed ID: 19831457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media.
    Kee HL; Diers JR; Ptaszek M; Muthiah C; Fan D; Lindsey JS; Bocian DF; Holten D
    Photochem Photobiol; 2009; 85(4):909-20. PubMed ID: 19222800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent, through-bond energy transfer cassettes for labeling multiple biological molecules in one experiment.
    Jiao GS; Thoresen LH; Burgess K
    J Am Chem Soc; 2003 Dec; 125(48):14668-9. PubMed ID: 14640617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Through-Bond Energy Transfer Cassette with Dual-Stokes Shifts for "Double Checked" Cell Imaging.
    Xue X; Jin S; Li Z; Zhang C; Guo W; Hu L; Wang PC; Zhang J; Liang XJ
    Adv Sci (Weinh); 2017 Dec; 4(12):1700229. PubMed ID: 29270336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved measurements of intramolecular energy transfer in single donor/acceptor dyads.
    Hinze G; Haase M; Nolde F; Müllen K; Basché T
    J Phys Chem A; 2005 Aug; 109(30):6725-9. PubMed ID: 16834025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes.
    Kee HL; Nothdurft R; Muthiah C; Diers JR; Fan D; Ptaszek M; Bocian DF; Lindsey JS; Culver JP; Holten D
    Photochem Photobiol; 2008; 84(5):1061-72. PubMed ID: 18673324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced intramolecular charge transfer and S2 fluorescence in thiophene-pi-conjugated donor-acceptor systems: experimental and TDDFT studies.
    Zhao GJ; Chen RK; Sun MT; Liu JY; Li GY; Gao YL; Han KL; Yang XC; Sun L
    Chemistry; 2008; 14(23):6935-47. PubMed ID: 18576458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of crystalline- and graft polymer-based chemosensors.
    Broadwater SJ; Hickey MK; McQuade DT
    J Am Chem Soc; 2003 Sep; 125(37):11154-5. PubMed ID: 16220910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance energy transfer: spectral overlap, efficiency, and direction.
    Andrews DL; Rodríguez J
    J Chem Phys; 2007 Aug; 127(8):084509. PubMed ID: 17764271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous assay based on anti-Stokes' shift time-resolved fluorescence resonance energy-transfer measurement.
    Laitala V; Hemmilä I
    Anal Chem; 2005 Mar; 77(5):1483-7. PubMed ID: 15732934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysical and laser properties of cassettes based on a BODIPY and rhodamine pair.
    Gartzia-Rivero L; Yu H; Bañuelos J; López-Arbeloa I; Costela A; Garcia-Moreno I; Xiao Y
    Chem Asian J; 2013 Dec; 8(12):3133-41. PubMed ID: 24023008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient intramolecular energy transfer in single endcapped conjugated polymer molecules in the absence of appreciable spectral overlap.
    Becker K; Lupton JM; Feldmann J; Setayesh S; Grimsdale AC; Müllen K
    J Am Chem Soc; 2006 Jan; 128(3):680-1. PubMed ID: 16417332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AIEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg
    Chen Y; Zhang W; Cai Y; Kwok RTK; Hu Y; Lam JWY; Gu X; He Z; Zhao Z; Zheng X; Chen B; Gui C; Tang BZ
    Chem Sci; 2017 Mar; 8(3):2047-2055. PubMed ID: 28451323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.