These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19999038)

  • 1. [Setting limit values for chemical substances in the workplace: DNEL(INH) setting according to REACH principles following the example of 2-butyne-1,4-diol].
    Kupczewska-Dobecka M; Swiercz R
    Med Pr; 2009; 60(5):347-57. PubMed ID: 19999038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of REACH-derived no-effect levels for workers with EU indicative occupational exposure limit values and national limit values in Finland.
    Tynkkynen S; Santonen T; Stockmann-Juvala H
    Ann Occup Hyg; 2015 May; 59(4):401-15. PubMed ID: 25638729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting REACH guidance in the determination of the derived no effect level (DNEL).
    Kreider ML; Spencer Williams E
    Regul Toxicol Pharmacol; 2010 Nov; 58(2):323-9. PubMed ID: 20655351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scoping survey of attitudes towards occupational exposure limits and REACH derived no effect levels for workers among chemical risk managers at Swedish workplaces.
    Schenk L
    Int J Occup Med Environ Health; 2020 Sep; 33(5):611-620. PubMed ID: 32699425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of human biomonitoring (HBM) of chemical exposure in the characterisation of health risks under REACH.
    Boogaard PJ; Aylward LL; Hays SM
    Int J Hyg Environ Health; 2012 Feb; 215(2):238-41. PubMed ID: 22177527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Problems concerning the integration of "derived-no-effect-levels" (DNELS) into occupational safety and health regulations].
    Gromiec J
    Med Pr; 2008; 59(1):65-73. PubMed ID: 18663897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the potential human health risks from exposure to complex substances in accordance with REACH requirements. "White spirit" as a case study.
    McKee RH; Tibaldi R; Adenuga MD; Carrillo JC; Margary A
    Regul Toxicol Pharmacol; 2018 Feb; 92():439-457. PubMed ID: 29069582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human biomonitoring as a pragmatic tool to support health risk management of chemicals--examples under the EU REACH programme.
    Boogaard PJ; Hays SM; Aylward LL
    Regul Toxicol Pharmacol; 2011 Feb; 59(1):125-32. PubMed ID: 20933039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative study on occupational exposure limits of chemical substances in workplace between GBZ 2.1 in China and ACGIH in USA].
    Li W; Zhang M; Wang D
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2014 Jan; 32(1):1-26. PubMed ID: 24428986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassessment of occupational exposure limits.
    Stouten H; Ott H; Bouwman C; Wardenbach P
    Am J Ind Med; 2008 Jun; 51(6):407-18. PubMed ID: 18409185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derived no-effect levels (DNELs) under the European chemicals regulation REACH--an analysis of long-term inhalation worker-DNELs presented by industry.
    Schenk L; Deng U; Johanson G
    Ann Occup Hyg; 2015 May; 59(4):416-38. PubMed ID: 25471229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative comparison of the safety margins in the european indicative occupational exposure limits and the derived no-effect levels for workers under REACH.
    Schenk L; Johanson G
    Toxicol Sci; 2011 Jun; 121(2):408-16. PubMed ID: 21389111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical exposure and risk assessment at workplaces--modeling approach.
    Mäkinen M; Hämäläinen M; Forsman K; Liesivuori J
    Appl Occup Environ Hyg; 2002 Nov; 17(11):744-9. PubMed ID: 12419101
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of worker inhalation derived no effect levels for tungsten compounds.
    Jackson M; Lemus-Olalde R; Inhof C; Venezia C; Pardus M
    J Toxicol Environ Health B Crit Rev; 2013; 16(2):114-26. PubMed ID: 23682648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of indices proposed as criteria for assigning skin notation.
    Lavoué J; Milon A; Droz PO
    Ann Occup Hyg; 2008 Nov; 52(8):747-56. PubMed ID: 18687973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How safe is control banding? Integrated evaluation by comparing OELs with measurement data and using monte carlo simulation.
    Tischer M; Bredendiek-Kämper S; Poppek U; Packroff R
    Ann Occup Hyg; 2009 Jul; 53(5):449-62. PubMed ID: 19531808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fractional and component composition of dust in the air of workplace at machinery enterprise].
    Maĭ IV; Zagorodnov SIu; Maks AA
    Med Tr Prom Ekol; 2012; (12):12-5. PubMed ID: 23461182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A consistent and transparent approach for calculation of Derived No-Effect Levels (DNELs) for petroleum substances.
    Boogaard PJ; Banton MI; Dalbey W; Hedelin AS; Riley AJ; Rushton EK; Vaissière M; Minsavage GD
    Regul Toxicol Pharmacol; 2012 Feb; 62(1):85-98. PubMed ID: 22178770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Industry Derived Occupational Exposure Limits: A Survey of Professionals on the Dutch System of Exposure Guidelines.
    Schenk L; Visser MJ; Palmen NGM
    Ann Work Expo Health; 2019 Nov; 63(9):1004-1012. PubMed ID: 31504142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background on the system of integral evaluation of human exposure to toxic substances in the work and municipal environments.
    Dutkiewicz T; Kończalik J
    Int J Occup Med Environ Health; 1999; 12(3):263-71. PubMed ID: 10581867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.