BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 19999996)

  • 1. Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates.
    Wang H; Jia Y
    J Environ Sci (China); 2009; 21(10):1409-14. PubMed ID: 19999996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bioavailability of adsorbed Cd on typical oxides of sediment in Phragmites australis].
    Wang H; Jia YF; Liu L; Zhu HJ; Wu X; Wang SY
    Huan Jing Ke Xue; 2009 Jun; 30(6):1773-8. PubMed ID: 19662867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis.
    Wang H; Jia Y; Wang S; Zhu H; Wu X
    J Hazard Mater; 2009 Aug; 167(1-3):641-6. PubMed ID: 19201537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bioavailability of cadmium associated with oxides in sediment: effects of species of mineral, association form and aging on bioavailability].
    Wang H; Jia YF; Liu L; Wang SY
    Huan Jing Ke Xue; 2009 Oct; 30(10):3055-9. PubMed ID: 19968130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.
    Wang H; Jia Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):743-751. PubMed ID: 27752952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.
    Sochacki A; Guy B; Faure O; Surmacz-Górska J
    Int J Phytoremediation; 2015; 17(11):1068-72. PubMed ID: 25848916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sediment composition on cadmium bioaccumulation in the clam Meretrix meretrix Linnaeus.
    Wu X; Xie L; Xu L; Wang S; Jia Y
    Environ Toxicol Chem; 2013 Apr; 32(4):841-7. PubMed ID: 23355485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.
    Zheng S; Wang C; Shen Z; Quan Y; Liu X
    Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis.
    Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F
    Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.
    Alhashemi AS; Karbassi AR; Kiabi BH; Monavari SM; Nabavi SM; Sekhavatjou MS
    Biol Trace Elem Res; 2011 Sep; 142(3):500-16. PubMed ID: 20694580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.
    Arivoli A; Mohanraj R; Seenivasan R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13336-43. PubMed ID: 25940487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant response to metal pollution in Phragmites australis from Anzali wetland.
    Esmaeilzadeh M; Karbassi A; Bastami KD
    Mar Pollut Bull; 2017 Jun; 119(1):376-380. PubMed ID: 28341292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis.
    Pardo T; Martínez-Fernández D; de la Fuente C; Clemente R; Komárek M; Bernal MP
    Environ Pollut; 2016 Dec; 219():296-304. PubMed ID: 27814546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications.
    Bonanno G
    Ecotoxicol Environ Saf; 2011 May; 74(4):1057-64. PubMed ID: 21316762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.