BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20000318)

  • 1. Size-dependent electrochemical oxidation of silver nanoparticles.
    Ivanova OS; Zamborini FP
    J Am Chem Soc; 2010 Jan; 132(1):70-2. PubMed ID: 20000318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte.
    Ivanova OS; Zamborini FP
    Anal Chem; 2010 Jul; 82(13):5844-50. PubMed ID: 20527732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential.
    Masitas RA; Zamborini FP
    J Am Chem Soc; 2012 Mar; 134(11):5014-7. PubMed ID: 22372940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach.
    Chang G; Zhang J; Oyama M; Hirao K
    J Phys Chem B; 2005 Jan; 109(3):1204-9. PubMed ID: 16851082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness.
    Kumar S; Zou S
    Langmuir; 2007 Jun; 23(13):7365-71. PubMed ID: 17521203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination.
    Goyal RN; Oyama M; Bachheti N; Singh SP
    Bioelectrochemistry; 2009 Feb; 74(2):272-7. PubMed ID: 19028444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes.
    Chang G; Oyama M; Hirao K
    J Phys Chem B; 2006 Oct; 110(41):20362-8. PubMed ID: 17034219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation-Dependent Oxidation of Metal Nanoparticles.
    Allen SL; Sharma JN; Zamborini FP
    J Am Chem Soc; 2017 Sep; 139(37):12895-12898. PubMed ID: 28853877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size distributions of silver nanoparticles at environmentally relevant conditions.
    Cumberland SA; Lead JR
    J Chromatogr A; 2009 Dec; 1216(52):9099-105. PubMed ID: 19647834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles.
    Qi H; Alexson D; Glembocki O; Prokes SM
    Nanotechnology; 2010 May; 21(21):215706. PubMed ID: 20431201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications.
    Wu Q; Cao H; Luan Q; Zhang J; Wang Z; Warner JH; Watt AA
    Inorg Chem; 2008 Jul; 47(13):5882-8. PubMed ID: 18498157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor.
    Song Y; Cui K; Wang L; Chen S
    Nanotechnology; 2009 Mar; 20(10):105501. PubMed ID: 19417520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach.
    Levard C; Michel FM; Wang Y; Choi Y; Eng P; Brown GE
    J Synchrotron Radiat; 2011 Nov; 18(Pt 6):871-8. PubMed ID: 21997911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical synthesis of zinc nanoparticles via a metal-ligand-coordinated vesicle phase.
    Gao Y; Hao J
    J Phys Chem B; 2009 Jul; 113(28):9461-71. PubMed ID: 19548656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc phthalocyanine and silver/gold nanoparticles incorporated MCM-41 type materials as electrode modifiers.
    Pal M; Ganesan V
    Langmuir; 2009 Nov; 25(22):13264-72. PubMed ID: 19824690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.