BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20000320)

  • 1. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.
    Chhabra R; Moralez JG; Raez J; Yamazaki T; Cho JY; Myles AJ; Kovalenko A; Fenniri H
    J Am Chem Soc; 2010 Jan; 132(1):32-3. PubMed ID: 20000320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large array of sub-10-nm single-grain Au nanodots for use in nanotechnology.
    Clément N; Patriarche G; Smaali K; Vaurette F; Nishiguchi K; Troadec D; Fujiwara A; Vuillaume D
    Small; 2011 Sep; 7(18):2607-13. PubMed ID: 21805628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and self-organization of bimetallic Pd/Au nanoparticles on SiO2 by sequential sputtering depositions and annealing processes.
    Ruffino F; Pecora EF; Grimaldi MG
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8537-45. PubMed ID: 23421241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc oxide nanorod growth on gold islands prepared by microsphere lithography on silicon and quartz.
    Blackledge CW; Szarko JM; Dupont A; Chan GH; Read EL; Leone SR
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3336-9. PubMed ID: 18019171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-ion induced transition from multi- to single-bilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles.
    Nishimura T; Matsuo T; Sakurai K
    Phys Chem Chem Phys; 2011 Sep; 13(35):15899-905. PubMed ID: 21829827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis.
    Meng Y; Cai L; Xu X; Zhang L
    Int J Biol Macromol; 2018 Jul; 113():240-247. PubMed ID: 29476855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical approach toward deposition of gold nanoparticles on functionalized carbon nanotubes.
    Lollmahomed FB; Narain R
    Langmuir; 2011 Oct; 27(20):12642-9. PubMed ID: 21879754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments.
    Song S; Chen Y; Yan Z; Fenniri H; Webster TJ
    Int J Nanomedicine; 2011 Jan; 6():101-7. PubMed ID: 21289987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An off-on electrochemiluminescence detection for microRNAs based on TiO
    Dai P; Ke J; Xie C; Wei L; Zhang Y; He Y; Chen L; Jin J
    Anal Bioanal Chem; 2020 Sep; 412(23):5779-5787. PubMed ID: 32648106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotube composites consisting of metal nanoparticles and polythiophene from electropolymerization of terthiophene-functionalized metal (Au, Pd) nanoparticles.
    Umeda R; Awaji H; Nakahodo T; Fujihara H
    J Am Chem Soc; 2008 Mar; 130(11):3240-1. PubMed ID: 18288846
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes.
    Ratanatawanate C; Yu J; Zhou C; Zheng J; Balkus KJ
    Nanotechnology; 2011 Feb; 22(6):065601. PubMed ID: 21212487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties.
    Chen MN; Chan CF; Huang SL; Lin YS
    J Sci Food Agric; 2019 May; 99(7):3693-3702. PubMed ID: 30663065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential.
    Hamelian M; Varmira K; Veisi H
    J Photochem Photobiol B; 2018 Jul; 184():71-79. PubMed ID: 29842987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled polyelectrolyte coating of glass-supported metal nanostructures.
    Alvarez M; Bocchio NL; Kreiter M
    Langmuir; 2009 Jan; 25(2):1097-102. PubMed ID: 19177653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of gold nanotubes from removable MgO nanowires templates.
    Kim HW; Lee JW; Kebede MA; Kim HS; Srinivasa B; Kong MH; Lee C
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5715-9. PubMed ID: 19198294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversing the Thermodynamics of Galvanic Replacement Reactions by Decreasing the Size of Gold Nanoparticles.
    Pattadar DK; Masitas RA; Stachurski CD; Cliffel DE; Zamborini FP
    J Am Chem Soc; 2020 Nov; 142(45):19268-19277. PubMed ID: 33140961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione.
    Mers SS; Kumar ET; Ganesh V
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):171-82. PubMed ID: 26491318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes.
    Chen X; Liu W; Tang L; Wang J; Pan H; Du M
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():304-10. PubMed ID: 24268262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.
    Jin H; Zhou Y; Huang W; Zheng Y; Zhu X; Yan D
    Chem Commun (Camb); 2014 Jun; 50(46):6157-60. PubMed ID: 24777118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable Supra-Assembly of a DNA Surface Adapter for Tunable Chiral Directional Self-Assembly of Gold Nanorods.
    Lan X; Su Z; Zhou Y; Meyer T; Ke Y; Wang Q; Chiu W; Liu N; Zou S; Yan H; Liu Y
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14632-14636. PubMed ID: 28971555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.