These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 20000353)
1. Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. Li SC; Diebold U J Am Chem Soc; 2010 Jan; 132(1):64-6. PubMed ID: 20000353 [TBL] [Abstract][Full Text] [Related]
2. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation. Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442 [TBL] [Abstract][Full Text] [Related]
3. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
4. Adsorption configurations and energetics of BClx (x=0-3) on TiO2 anatase (101) and rutile (110) surfaces. Chang JG; Wang J; Lin MC J Phys Chem A; 2007 Jul; 111(29):6746-54. PubMed ID: 17447738 [TBL] [Abstract][Full Text] [Related]
5. Adsorption-site-dependent electronic structure of catechol on the anatase TiO2(101) surface. Li SC; Losovyj Y; Diebold U Langmuir; 2011 Jul; 27(14):8600-4. PubMed ID: 21688795 [TBL] [Abstract][Full Text] [Related]
6. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO(2) in selective acetylene hydrogenation. Panpranot J; Kontapakdee K; Praserthdam P J Phys Chem B; 2006 Apr; 110(15):8019-24. PubMed ID: 16610902 [TBL] [Abstract][Full Text] [Related]
7. The structure and catalytic activity of anatase and rutile titania supported manganese oxide catalysts for selective catalytic reduction of NO by NH3. Zhuang K; Qiu J; Tang F; Xu B; Fan Y Phys Chem Chem Phys; 2011 Mar; 13(10):4463-9. PubMed ID: 21258687 [TBL] [Abstract][Full Text] [Related]
8. Correlation of the catalytic activity for oxidation taking place on various TiO2 surfaces with surface OH groups and surface oxygen vacancies. Zheng Z; Teo J; Chen X; Liu H; Yuan Y; Waclawik ER; Zhong Z; Zhu H Chemistry; 2010 Jan; 16(4):1202-11. PubMed ID: 19918811 [TBL] [Abstract][Full Text] [Related]
9. Role of Ti-O bonds in phase transitions of TiO2. Nosheen S; Galasso FS; Suib SL Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129 [TBL] [Abstract][Full Text] [Related]
10. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces. Huang WF; Raghunath P; Lin MC J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334 [TBL] [Abstract][Full Text] [Related]
11. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110). Ratliff JS; Tenney SA; Hu X; Conner SF; Ma S; Chen DA Langmuir; 2009 Jan; 25(1):216-25. PubMed ID: 19053659 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light. Yang Q; Xie C; Xu Z; Gao Z; Du Y J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596 [TBL] [Abstract][Full Text] [Related]
13. Gold, copper, and platinum nanoparticles dispersed on CeO(x)/TiO(2)(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. Park JB; Graciani J; Evans J; Stacchiola D; Senanayake SD; Barrio L; Liu P; Fdez Sanz J; Hrbek J; Rodriguez JA J Am Chem Soc; 2010 Jan; 132(1):356-63. PubMed ID: 19994897 [TBL] [Abstract][Full Text] [Related]
14. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation. Liu L; Qiao B; Ma Y; Zhang J; Deng Y Dalton Trans; 2008 May; (19):2542-8. PubMed ID: 18443696 [TBL] [Abstract][Full Text] [Related]
15. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Wang C; Shao C; Liu Y; Li X Inorg Chem; 2009 Feb; 48(3):1105-13. PubMed ID: 19127997 [TBL] [Abstract][Full Text] [Related]
16. Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Wang J; Guo B; Zhang X; Zhang Z; Han J; Wu J Ultrason Sonochem; 2005 Apr; 12(5):331-7. PubMed ID: 15590305 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436 [TBL] [Abstract][Full Text] [Related]
18. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417 [TBL] [Abstract][Full Text] [Related]
19. Diverse modes of reactivity of dialkyl azodicarboxylates with P(III) compounds: synthesis, structure, and reactivity of products other than the Morrison-Brunn-Huisgen intermediate in a Mitsunobu-type reaction. Satish Kumar N; Praveen Kumar K; Pavan Kumar KV; Kommana P; Vittal JJ; Kumara Swamy KC J Org Chem; 2004 Mar; 69(6):1880-9. PubMed ID: 15058933 [TBL] [Abstract][Full Text] [Related]
20. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Rodriguez JA; Illas F Phys Chem Chem Phys; 2012 Jan; 14(2):427-38. PubMed ID: 22108864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]