These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20000355)

  • 1. Systematic analysis of public domain compound potency data identifies selective molecular scaffolds across druggable target families.
    Hu Y; Wassermann AM; Lounkine E; Bajorath J
    J Med Chem; 2010 Jan; 53(2):752-8. PubMed ID: 20000355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular scaffolds with high propensity to form multi-target activity cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints.
    Vogt I; Stumpfe D; Ahmed HE; Bajorath J
    Chem Biol Drug Des; 2007 Sep; 70(3):195-205. PubMed ID: 17718714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for computer-aided chemical biology. Part 1: Design of a benchmark system for the evaluation of compound selectivity.
    Stumpfe D; Ahmed HE; Vogt I; Bajorath J
    Chem Biol Drug Des; 2007 Sep; 70(3):182-94. PubMed ID: 17718713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic identification of scaffolds representing compounds active against individual targets and single or multiple target families.
    Hu Y; Bajorath J
    J Chem Inf Model; 2013 Feb; 53(2):312-26. PubMed ID: 23339619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational chemical biology: identification of small molecular probes that discriminate between members of target protein families.
    Dimova D; Bajorath J
    Chem Biol Drug Des; 2012 Apr; 79(4):369-75. PubMed ID: 22171579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for computer-aided chemical biology. Part 3: analysis of structure-selectivity relationships through single- or dual-step selectivity searching and Bayesian classification.
    Stumpfe D; Geppert H; Bajorath J
    Chem Biol Drug Des; 2008 Jun; 71(6):518-28. PubMed ID: 18482335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Formal Concept Analysis for compound selectivity profiling in biologically annotated databases.
    Lounkine E; Stumpfe D; Bajorath J
    J Chem Inf Model; 2009 Jun; 49(6):1359-68. PubMed ID: 19537827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment formal concept analysis accurately classifies compounds with closely related biological activities.
    Krüger F; Lounkine E; Bajorath J
    ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of single- and multi-target activity cliffs formed by currently available bioactive compounds.
    Wassermann AM; Dimova D; Bajorath J
    Chem Biol Drug Des; 2011 Aug; 78(2):224-8. PubMed ID: 21624090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular test systems for computational selectivity studies and systematic analysis of compound selectivity profiles.
    Stumpfe D; Lounkine E; Bajorath J
    Methods Mol Biol; 2011; 672():503-15. PubMed ID: 20838982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.
    Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J
    J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ring systems in mutagenicity databases.
    Kho R; Hodges JA; Hansen MR; Villar HO
    J Med Chem; 2005 Oct; 48(21):6671-8. PubMed ID: 16220983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds.
    Peltason L; Hu Y; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities.
    Ehrman TM; Barlow DJ; Hylands PJ
    J Chem Inf Model; 2007; 47(2):254-63. PubMed ID: 17381164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput molecular pathology in human tissues as a method for driving drug discovery.
    Beesley J; Roush C; Baker L
    Drug Discov Today; 2004 Feb; 9(4):182-9. PubMed ID: 14960398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of ligand relationships within target families.
    Bajorath J
    Curr Opin Chem Biol; 2008 Jun; 12(3):352-8. PubMed ID: 18312862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of activity and selectivity cliffs.
    Peltason L; Bajorath J
    Methods Mol Biol; 2011; 672():119-32. PubMed ID: 20838966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.