These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Preparation of tunable silicon q-dots through ultrasound. Troia A; Giovannozzi A; Amato G Ultrason Sonochem; 2009 Apr; 16(4):448-51. PubMed ID: 19201244 [TBL] [Abstract][Full Text] [Related]
4. A general route to efficient functionalization of silicon quantum dots for high-performance fluorescent probes. Wang J; Liu Y; Peng F; Chen C; He Y; Ma H; Cao L; Sun S Small; 2012 Aug; 8(15):2430-5. PubMed ID: 22623450 [TBL] [Abstract][Full Text] [Related]
5. Water-soluble photoluminescent silicon quantum dots. Warner JH; Hoshino A; Yamamoto K; Tilley RD Angew Chem Int Ed Engl; 2005 Jul; 44(29):4550-4. PubMed ID: 15973756 [No Abstract] [Full Text] [Related]
6. Aggregated CdS quantum dots: Host of biomolecular ligands. Narayanan SS; Pal SK J Phys Chem B; 2006 Dec; 110(48):24403-9. PubMed ID: 17134194 [TBL] [Abstract][Full Text] [Related]
7. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids. Choi JK; Jang S; Sohn H; Jeong HD J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. Ahire JH; Chambrier I; Mueller A; Bao Y; Chao Y ACS Appl Mater Interfaces; 2013 Aug; 5(15):7384-91. PubMed ID: 23815685 [TBL] [Abstract][Full Text] [Related]
9. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots. Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497 [TBL] [Abstract][Full Text] [Related]
10. Optimal surface functionalization of silicon quantum dots. Li QS; Zhang RQ; Lee ST; Niehaus TA; Frauenheim T J Chem Phys; 2008 Jun; 128(24):244714. PubMed ID: 18601372 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence quenching of CdSe quantum dots by tertiary amines and their surface binding effect. Galian RE; Scaiano JC Photochem Photobiol Sci; 2009 Jan; 8(1):70-4. PubMed ID: 19247532 [TBL] [Abstract][Full Text] [Related]
12. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles. Giuliani JR; Harley SJ; Carter RS; Power PP; Augustine MP Solid State Nucl Magn Reson; 2007 Aug; 32(1):1-10. PubMed ID: 17611084 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Low SP; Williams KA; Canham LT; Voelcker NH Biomaterials; 2006 Sep; 27(26):4538-46. PubMed ID: 16707158 [TBL] [Abstract][Full Text] [Related]
14. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. Fu YS; Du XW; Kulinich SA; Qiu JS; Qin WJ; Li R; Sun J; Liu J J Am Chem Soc; 2007 Dec; 129(51):16029-33. PubMed ID: 18044896 [TBL] [Abstract][Full Text] [Related]
15. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets: preparation, characterization, and optical properties. Pham TA; Choi BC; Jeong YT Nanotechnology; 2010 Nov; 21(46):465603. PubMed ID: 20972307 [TBL] [Abstract][Full Text] [Related]
16. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Cheng Q; Tam E; Xu S; Ostrikov KK Nanoscale; 2010 Apr; 2(4):594-600. PubMed ID: 20644764 [TBL] [Abstract][Full Text] [Related]
17. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L; Rosenzweig N; Rosenzweig Z Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141 [TBL] [Abstract][Full Text] [Related]
18. Thermally induced hydrosilylation at deuterium-terminated silicon nanoparticles: an investigation of the radical chain propagation mechanism. Holm J; Roberts JT Langmuir; 2009 Jun; 25(12):7050-6. PubMed ID: 19425604 [TBL] [Abstract][Full Text] [Related]