BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20000437)

  • 1. Vesicle-directed generation of gold nanoflowers by gemini amphiphiles and the spacer-controlled morphology and optical property.
    Zhong L; Zhai X; Zhu X; Yao P; Liu M
    Langmuir; 2010 Apr; 26(8):5876-81. PubMed ID: 20000437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and assembly of gold nanoparticles in organized molecular films of gemini amphiphiles.
    Zhong L; Jiao T; Liu M
    Langmuir; 2008 Oct; 24(20):11677-83. PubMed ID: 18823092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase.
    Cao C; Park S; Sim SJ
    J Colloid Interface Sci; 2008 Jun; 322(1):152-7. PubMed ID: 18395217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface functionalization on the growth of gold nanostructures on graphene thin films.
    Kim YK; Na HK; Min DH
    Langmuir; 2010 Aug; 26(16):13065-70. PubMed ID: 20695544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic synthesis of gold nanoflowers with trypsin.
    Li L; Weng J
    Nanotechnology; 2010 Jul; 21(30):305603. PubMed ID: 20603539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of chitosan-coated gold nanoflowers as SERS-active probes.
    Xu D; Gu J; Wang W; Yu X; Xi K; Jia X
    Nanotechnology; 2010 Sep; 21(37):375101. PubMed ID: 20720293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gemini amphiphiles regulated photopolymerization of diacetylene acid in organized molecular films.
    Zhong L; Jiao T; Liu M
    J Phys Chem B; 2009 Jul; 113(26):8867-71. PubMed ID: 19505068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile method to the synthesis of gold nanoprisms using a series of gemini amphiphiles.
    Zhong L; Jiao T; Liu M
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2726-30. PubMed ID: 19438027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and characterization of gold nanoparticles for use in plasmon probe spectroscopy and microscopy of biosystems.
    Chen Y; Preece JA; Palmer RE
    Ann N Y Acad Sci; 2008; 1130():201-6. PubMed ID: 18596349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone).
    Lim B; Camargo PH; Xia Y
    Langmuir; 2008 Sep; 24(18):10437-42. PubMed ID: 18712890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spacer-controlled aggregation and surface morphology of a selenacarbocyanine dye on gemini monolayers.
    Zhang G; Zhai X; Liu M
    J Phys Chem B; 2006 Jun; 110(21):10455-60. PubMed ID: 16722753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of aggregation and morphology of cyanine dyes on monolayers via gemini amphiphiles.
    Zhang G; Zhai X; Liu M; Tang Y; Zhang Y
    J Phys Chem B; 2007 Aug; 111(31):9301-8. PubMed ID: 17636984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.
    Dinda E; Si S; Kotal A; Mandal TK
    Chemistry; 2008; 14(18):5528-37. PubMed ID: 18470852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-less amino-sugar mediated synthesis of gold nanostars.
    Moukarzel W; Fitremann J; Marty JD
    Nanoscale; 2011 Aug; 3(8):3285-90. PubMed ID: 21727968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands.
    Liu Q; Guo M; Nie Z; Yuan J; Tan J; Yao S
    Langmuir; 2008 Mar; 24(5):1595-9. PubMed ID: 18237211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis and characterization of the enhanced local field of octahedral Au nanocrystals.
    Heo J; Kim DS; Kim ZH; Lee YW; Kim D; Kim M; Kwon K; Park HJ; Yun WS; Han SW
    Chem Commun (Camb); 2008 Dec; (46):6120-2. PubMed ID: 19082092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherical aggregates composed of gold nanoparticles.
    Chen CC; Kuo PL; Cheng YC
    Nanotechnology; 2009 Feb; 20(5):055603. PubMed ID: 19417350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.