These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20000458)

  • 1. Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugates.
    Tong R; Cheng J
    Bioconjug Chem; 2010 Jan; 21(1):111-21. PubMed ID: 20000458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles.
    Tong R; Cheng J
    J Am Chem Soc; 2009 Apr; 131(13):4744-54. PubMed ID: 19281160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells.
    Tong R; Yala L; Fan TM; Cheng J
    Biomaterials; 2010 Apr; 31(11):3043-53. PubMed ID: 20122727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of structural factors on release profiles of camptothecin from block copolymer conjugates with high load of drug.
    Plichta A; Kowalczyk S; Olędzka E; Sobczak M; Strawski M
    Int J Pharm; 2018 Mar; 538(1-2):231-242. PubMed ID: 29341920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications.
    Tong R; Coyle VJ; Tang L; Barger AM; Fan TM; Cheng J
    Microsc Res Tech; 2010 Sep; 73(9):901-9. PubMed ID: 20146347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-initiated ring-opening polymerization of O-carboxyanhydrides for the preparation of anticancer drug-poly(O-carboxyanhydride) nanoconjugates.
    Yin Q; Tong R; Xu Y; Baek K; Dobrucki LW; Fan TM; Cheng J
    Biomacromolecules; 2013 Mar; 14(3):920-9. PubMed ID: 23445497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation and Controlled Release of a Camptothecin Prodrug from Nanocarriers and Microgels: Tuning Release Rate with Nanocarrier Excipient Composition.
    Wilson BK; Sinko PJ; Prud'homme RK
    Mol Pharm; 2021 Mar; 18(3):1093-1101. PubMed ID: 33440941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphatic biodistribution of polylactide nanoparticles.
    Chaney EJ; Tang L; Tong R; Cheng J; Boppart SA
    Mol Imaging; 2010 Jun; 9(3):153-62. PubMed ID: 20487681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-polyester conjugated nanoparticles for cancer drug delivery.
    Tong R; Tang L; Yin Q; Cheng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8337-9. PubMed ID: 22256280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic block co-polyesters bearing pendant cyclic ketal groups as nanocarriers for controlled release of camptothecin.
    Wang X; Gurski LA; Zhong S; Xu X; Pochan DJ; Farach-Carson MC; Jia X
    J Biomater Sci Polym Ed; 2011; 22(10):1275-98. PubMed ID: 20594408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of novel camptothecin/5-fluorouracil conjugates as cytotoxic agents.
    Liu YQ; Dai W; Yang L; Li HY
    Nat Prod Res; 2011 Nov; 25(19):1817-26. PubMed ID: 21452098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine.
    Koo OM; Rubinstein I; Onyuksel H
    Nanomedicine; 2005 Mar; 1(1):77-84. PubMed ID: 17292061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-crosslinked nanomicelles based on crosslinkable prodrug and surfactants for reduction responsive delivery of camptothecin and improved anticancer efficacy.
    He W; Du Y; Zhou W; Wang T; Li M; Li X
    Eur J Pharm Sci; 2020 Jul; 150():105340. PubMed ID: 32371069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.
    Min KH; Park K; Kim YS; Bae SM; Lee S; Jo HG; Park RW; Kim IS; Jeong SY; Kim K; Kwon IC
    J Control Release; 2008 May; 127(3):208-18. PubMed ID: 18336946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer-Drug Conjugates.
    Tong R; Cheng J
    Macromolecules; 2012 Mar; 45(5):2225-2232. PubMed ID: 23357880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle characteristics and biodistribution of camptothecin-loaded PLA/(PEG-PPG-PEG) nanoparticles.
    Kunii R; Onishi H; Ueki K; Koyama K; Machida Y
    Drug Deliv; 2008 Jan; 15(1):3-10. PubMed ID: 18197517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading studies of the anticancer drug camptothecin into dual stimuli-sensitive nanoparticles. Stability scrutiny.
    Iglesias N; Galbis E; Díaz-Blanco MJ; de-Paz MV; Galbis JA
    Int J Pharm; 2018 Oct; 550(1-2):429-438. PubMed ID: 30196142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy.
    Aryal S; Hu CM; Zhang L
    Mol Pharm; 2011 Aug; 8(4):1401-7. PubMed ID: 21696189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel.
    Dong Y; Feng SS
    J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.