BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 20000465)

  • 1. Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals.
    Li L; Coates N; Moses D
    J Am Chem Soc; 2010 Jan; 132(1):22-3. PubMed ID: 20000465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.
    Lee D; Yong K
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of CuInS2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties.
    Lee SM; Ikeda S; Yagi T; Harada T; Ennaoui A; Matsumura M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6662-9. PubMed ID: 21384000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Dynamics in Solution-Processed Nanocrystalline CuInS2 Solar Cells.
    Halpert JE; Morgenstern FS; Ehrler B; Vaynzof Y; Credgington D; Greenham NC
    ACS Nano; 2015 Jun; 9(6):5857-67. PubMed ID: 25951125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.
    Cho JW; Park SJ; Kim W; Min BK
    Nanotechnology; 2012 Jul; 23(26):265401. PubMed ID: 22699212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells.
    Gao Y; Nagai M
    Langmuir; 2006 Apr; 22(8):3936-40. PubMed ID: 16584278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-stable all-inorganic nanocrystal solar cells processed from solution.
    Gur I; Fromer NA; Geier ML; Alivisatos AP
    Science; 2005 Oct; 310(5747):462-5. PubMed ID: 16239470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition of ultra thin CuInS₂ absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C).
    Schneider N; Bouttemy M; Genevée P; Lincot D; Donsanti F
    Nanotechnology; 2015 Feb; 26(5):054001. PubMed ID: 25586382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer.
    Hou Y; Azimi H; Gasparini N; Salvador M; Chen W; Khanzada LS; Brandl M; Hock R; Brabec CJ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21100-6. PubMed ID: 26353923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuInS(2) solar cells by air-stable ink rolling.
    Weil BD; Connor ST; Cui Y
    J Am Chem Soc; 2010 May; 132(19):6642-3. PubMed ID: 20423082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-cyclodextrin functionalized CdS nanocrystals for fabrication of 2/3 D assemblies.
    Depalo N; Comparelli R; Striccoli M; Curri ML; Fini P; Giotta L; Agostiano A
    J Phys Chem B; 2006 Sep; 110(35):17388-99. PubMed ID: 16942075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of anions in aqueous sol-gel process enabling flexible Cu(In,Ga)S2 thin-film solar cells.
    Oh Y; Woo K; Lee D; Lee H; Kim K; Kim I; Zhong Z; Jeong S; Moon J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17740-7. PubMed ID: 25265601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition of CuInS2 thin films using copper- and indium/sulfide-containing precursors through a two-stage MOCVD method.
    Lee SS; Seo KW; Park JP; Kim SK; Shim IW
    Inorg Chem; 2007 Feb; 46(3):1013-7. PubMed ID: 17257045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2009 Sep; 131(34):12054-5. PubMed ID: 19673478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods.
    Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y
    J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy.
    Du W; Qian X; Yin J; Gong Q
    Chemistry; 2007; 13(31):8840-6. PubMed ID: 17654756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution.
    Sun Z; Liu Z; Han B; Miao S; Miao Z; An G
    J Colloid Interface Sci; 2006 Dec; 304(2):323-8. PubMed ID: 17022993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution transformation of Cu₂O into CuInS₂ for solar water splitting.
    Luo J; Tilley SD; Steier L; Schreier M; Mayer MT; Fan HJ; Grätzel M
    Nano Lett; 2015 Feb; 15(2):1395-402. PubMed ID: 25585159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.