These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20000529)

  • 1. A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil.
    Lee KY; Yoon IH; Lee BT; Kim SO; Kim KW
    Environ Sci Technol; 2009 Dec; 43(24):9354-60. PubMed ID: 20000529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents.
    Lee KY; Kim KW
    Environ Sci Technol; 2010 Dec; 44(24):9482-7. PubMed ID: 21090604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R
    Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions.
    Chatain V; Bayard R; Sanchez F; Moszkowicz P; Gourdon R
    Environ Int; 2005 Feb; 31(2):221-6. PubMed ID: 15661287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil.
    Lee KY; Kim HA; Lee BT; Kim SO; Kwon YH; Kim KW
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():3-11. PubMed ID: 21046430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils.
    Lee KY; Kim KW; Kim SO
    Environ Geochem Health; 2010 Feb; 32(1):31-44. PubMed ID: 19412738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA; Zouboulis AI
    Water Res; 2004 Jan; 38(1):17-26. PubMed ID: 14630099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.
    Wang S; Mulligan CN
    Chemosphere; 2009 Jan; 74(2):274-9. PubMed ID: 18977015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier.
    Yuan C; Chiang TS
    Chemosphere; 2007 Apr; 67(8):1533-42. PubMed ID: 17267020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply.
    Lee JU; Lee SW; Chon HT; Kim KW; Lee JS
    Environ Int; 2009 Apr; 35(3):496-501. PubMed ID: 18789531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans.
    Kim HA; Lee KY; Lee BT; Kim SO; Kim KW
    Water Res; 2012 Nov; 46(17):5591-5599. PubMed ID: 22921395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.
    Vaxevanidou K; Papassiopi N; Paspaliaris I
    Chemosphere; 2008 Feb; 70(8):1329-37. PubMed ID: 18037468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the bioremediation of arsenic-contaminated groundwater.
    Zouboulis AI; Katsoyiannis IA
    Environ Int; 2005 Feb; 31(2):213-9. PubMed ID: 15661286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain).
    Casado M; Anawar HM; Garcia-Sanchez A; Regina IS
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):29-35. PubMed ID: 17618375
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.