BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 20000530)

  • 1. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.
    Arao T; Kawasaki A; Baba K; Mori S; Matsumoto S
    Environ Sci Technol; 2009 Dec; 43(24):9361-7. PubMed ID: 20000530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Reducing cadmium content of rice grains by means of flooding and a few problems].
    Kawasaki A; Arao T; Ishikawa S
    Nihon Eiseigaku Zasshi; 2012; 67(4):478-83. PubMed ID: 23095358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.
    Khan KA; Stroud JL; Zhu YG; McGrath SP; Zhao FJ
    Environ Sci Technol; 2010 Nov; 44(22):8515-21. PubMed ID: 20977268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water.
    Smith E; Juhasz AL; Weber J; Naidu R
    Sci Total Environ; 2008 Mar; 392(2-3):277-83. PubMed ID: 18164371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.
    Norton GJ; Adomako EE; Deacon CM; Carey AM; Price AH; Meharg AA
    Environ Pollut; 2013 Jun; 177():38-47. PubMed ID: 23466730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar.
    Hu P; Ouyang Y; Wu L; Shen L; Luo Y; Christie P
    J Environ Sci (China); 2015 Jan; 27():225-31. PubMed ID: 25597681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils.
    Syu CH; Huang CC; Jiang PY; Lee CH; Lee DY
    J Hazard Mater; 2015 Apr; 286():179-86. PubMed ID: 25577320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice.
    Roychowdhury T
    Food Chem Toxicol; 2008 Aug; 46(8):2856-64. PubMed ID: 18602205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.
    Lu Y; Dong F; Deacon C; Chen HJ; Raab A; Meharg AA
    Environ Pollut; 2010 May; 158(5):1536-41. PubMed ID: 20045585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.
    Moreno-Jiménez E; Meharg AA; Smolders E; Manzano R; Becerra D; Sánchez-Llerena J; Albarrán Á; López-Piñero A
    Sci Total Environ; 2014 Jul; 485-486():468-473. PubMed ID: 24742557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arsenic compound amendment on arsenic speciation in rice grain.
    Arao T; Kawasaki A; Baba K; Matsumoto S
    Environ Sci Technol; 2011 Feb; 45(4):1291-7. PubMed ID: 21247103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains.
    Honma T; Ohba H; Kaneko-Kadokura A; Makino T; Nakamura K; Katou H
    Environ Sci Technol; 2016 Apr; 50(8):4178-85. PubMed ID: 26999020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study.
    Das HK; Mitra AK; Sengupta PK; Hossain A; Islam F; Rabbani GH
    Environ Int; 2004 May; 30(3):383-7. PubMed ID: 14987870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China.
    Fu Y; Chen M; Bi X; He Y; Ren L; Xiang W; Qiao S; Yan S; Li Z; Ma Z
    Environ Pollut; 2011 Jul; 159(7):1757-62. PubMed ID: 21549462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice.
    Zeng F; Mao Y; Cheng W; Wu F; Zhang G
    Environ Pollut; 2008 May; 153(2):309-14. PubMed ID: 17905495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China.
    Huang RQ; Gao SF; Wang WL; Staunton S; Wang G
    Sci Total Environ; 2006 Sep; 368(2-3):531-41. PubMed ID: 16624379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.
    Dittmar J; Voegelin A; Maurer F; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R
    Environ Sci Technol; 2010 Dec; 44(23):8842-8. PubMed ID: 21043519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.
    Azizur Rahman M; Hasegawa H; Mahfuzur Rahman M; Mazid Miah MA; Tasmin A
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):317-24. PubMed ID: 17346792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus.
    Hossain MB; Jahiruddin M; Panaullah GM; Loeppert RH; Islam MR; Duxbury JM
    Environ Pollut; 2008 Dec; 156(3):739-44. PubMed ID: 18644665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh.
    van Geen A; Zheng Y; Cheng Z; He Y; Dhar RK; Garnier JM; Rose J; Seddique A; Hoque MA; Ahmed KM
    Sci Total Environ; 2006 Aug; 367(2-3):769-77. PubMed ID: 16730050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.