These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20000537)

  • 21. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene.
    Taghavi S; Barac T; Greenberg B; Borremans B; Vangronsveld J; van der Lelie D
    Appl Environ Microbiol; 2005 Dec; 71(12):8500-5. PubMed ID: 16332840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditions required for the stimulation of bioluminescence activity of the genetically engineered bacteria, P. putida mt-2 KG1206, preserved by deep-freezing.
    Ko KS; Kong IC
    Sci Total Environ; 2009 Mar; 407(7):2427-30. PubMed ID: 19176233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of p-nitrophenol by P. putida.
    Kulkarni M; Chaudhari A
    Bioresour Technol; 2006 May; 97(8):982-8. PubMed ID: 16009549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversity of endophytic bacterial communities in poplar grown under field conditions.
    Ulrich K; Ulrich A; Ewald D
    FEMS Microbiol Ecol; 2008 Feb; 63(2):169-80. PubMed ID: 18199082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):150-170. PubMed ID: 28133997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds.
    Sheoran N; Valiya Nadakkakath A; Munjal V; Kundu A; Subaharan K; Venugopal V; Rajamma S; Eapen SJ; Kumar A
    Microbiol Res; 2015 Apr; 173():66-78. PubMed ID: 25801973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil.
    Zhao S; Ramette A; Niu GL; Liu H; Zhou NY
    FEMS Microbiol Ecol; 2009 Nov; 70(2):159-67. PubMed ID: 19825042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments.
    Bott TL; Kaplan LA
    Microb Ecol; 2002 Mar; 43(2):199-216. PubMed ID: 12023727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term changes in ground water chemistry at a phytoremediation demonstration site.
    Eberts SM; Jones SA; Braun CL; Harvey GJ
    Ground Water; 2005; 43(2):178-86. PubMed ID: 15819939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2.
    Bathe S; Schwarzenbeck N; Hausner M
    Lett Appl Microbiol; 2005; 41(3):242-7. PubMed ID: 16108914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotransformation of benzothiazole derivatives by the Pseudomonas putida strain HKT554.
    El-Bassi L; Iwasaki H; Oku H; Shinzato N; Matsui T
    Chemosphere; 2010 Sep; 81(1):109-13. PubMed ID: 20692014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombinant plasmid, pADPTel.
    Hirkala DL; Germida JJ
    Can J Microbiol; 2004 Aug; 50(8):595-604. PubMed ID: 15467785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass balance studies of volatile chlorinated hydrocarbon phytoremediation.
    Strand SE; Dossett M; Harris C; Wang X; Doty SL
    Z Naturforsch C J Biosci; 2005; 60(3-4):325-30. PubMed ID: 15948602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteria and phytoremediation: new uses for endophytic bacteria in plants.
    Newman LA; Reynolds CM
    Trends Biotechnol; 2005 Jan; 23(1):6-8; discussion 8-9. PubMed ID: 15629849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil].
    Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants.
    Ho YN; Mathew DC; Hsiao SC; Shih CH; Chien MF; Chiang HM; Huang CC
    J Hazard Mater; 2012 Jun; 219-220():43-9. PubMed ID: 22497718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulating uptake and transport of TNT by plants using STELLA.
    Ouyang Y; Huang CH; Huang DY; Lin D; Cui L
    Chemosphere; 2007 Oct; 69(8):1245-52. PubMed ID: 17655913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES.
    Strycharz S; Newman L
    Int J Phytoremediation; 2009 Feb; 11(2):171-186. PubMed ID: 28133996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.