These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 20000540)
1. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Higgins MR; Olson TM Environ Sci Technol; 2009 Dec; 43(24):9432-8. PubMed ID: 20000540 [TBL] [Abstract][Full Text] [Related]
2. Environmental life cycle assessment of permeable reactive barriers: effects of construction methods, reactive materials and groundwater constituents. Mak MS; Lo IM Environ Sci Technol; 2011 Dec; 45(23):10148-54. PubMed ID: 22035382 [TBL] [Abstract][Full Text] [Related]
3. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133 [TBL] [Abstract][Full Text] [Related]
4. Life cycle assessment of active and passive groundwater remediation technologies. Bayer P; Finkel M J Contam Hydrol; 2006 Feb; 83(3-4):171-99. PubMed ID: 16378660 [TBL] [Abstract][Full Text] [Related]
5. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442 [TBL] [Abstract][Full Text] [Related]
6. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK. Jarvis AP; Moustafa M; Orme PH; Younger PL Environ Pollut; 2006 Sep; 143(2):261-8. PubMed ID: 16443312 [TBL] [Abstract][Full Text] [Related]
7. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. Beak DG; Wilkin RT J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132 [TBL] [Abstract][Full Text] [Related]
8. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. Jun D; Yongsheng Z; Weihong Z; Mei H J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811 [TBL] [Abstract][Full Text] [Related]
9. Life cycle based risk assessment of recycled materials in roadway construction. Carpenter AC; Gardner KH; Fopiano J; Benson CH; Edil TB Waste Manag; 2007; 27(10):1458-64. PubMed ID: 17499986 [TBL] [Abstract][Full Text] [Related]
10. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis. VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893 [TBL] [Abstract][Full Text] [Related]
11. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. Zolla V; Freyria FS; Sethi R; Di Molfetta A J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678 [TBL] [Abstract][Full Text] [Related]
12. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Lemming G; Hauschild MZ; Chambon J; Binning PJ; Bulle C; Margni M; Bjerg PL Environ Sci Technol; 2010 Dec; 44(23):9163-9. PubMed ID: 21053954 [TBL] [Abstract][Full Text] [Related]
13. Tracer method to determine residence time in a permeable reactive barrier. Bartlett TR; Morrison SJ Ground Water; 2009; 47(4):598-604. PubMed ID: 19245377 [TBL] [Abstract][Full Text] [Related]
14. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Lin L; Benson CH; Lawson EM Ground Water; 2005; 43(4):582-96. PubMed ID: 16029183 [TBL] [Abstract][Full Text] [Related]
15. Zero valent iron remediation of a mixed brominated ethene contaminated groundwater. Cohen EL; Patterson BM; McKinley AJ; Prommer H J Contam Hydrol; 2009 Jan; 103(3-4):109-18. PubMed ID: 18990465 [TBL] [Abstract][Full Text] [Related]
16. Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment. Muñoz I; Peral J; Ayllón JA; Malato S; Passarinho P; Domènech X Water Res; 2006 Nov; 40(19):3533-40. PubMed ID: 16989886 [TBL] [Abstract][Full Text] [Related]
17. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants. Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770 [TBL] [Abstract][Full Text] [Related]
18. Directed site exploration for permeable reactive barrier design. Lee J; Graettinger AJ; Moylan J; Reeves HW J Hazard Mater; 2009 Feb; 162(1):222-9. PubMed ID: 18573602 [TBL] [Abstract][Full Text] [Related]
19. Integrated environmental assessment of tertiary and residuals treatment--LCA in the wastewater industry. Beavis P; Lundie S Water Sci Technol; 2003; 47(7-8):109-16. PubMed ID: 12793669 [TBL] [Abstract][Full Text] [Related]
20. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Muñoz I; José Gómez M; Molina-Díaz A; Huijbregts MA; Fernández-Alba AR; García-Calvo E Chemosphere; 2008 Dec; 74(1):37-44. PubMed ID: 18951608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]