These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 20000587)
1. Recipes for the selection of experimental protein conformations for virtual screening. Rueda M; Bottegoni G; Abagyan R J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587 [TBL] [Abstract][Full Text] [Related]
2. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. Craig IR; Essex JW; Spiegel K J Chem Inf Model; 2010 Apr; 50(4):511-24. PubMed ID: 20222690 [TBL] [Abstract][Full Text] [Related]
3. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example. Mahasenan KV; Li C J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736 [TBL] [Abstract][Full Text] [Related]
4. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening. Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509 [TBL] [Abstract][Full Text] [Related]
5. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening. Xia J; Hsieh JH; Hu H; Wu S; Wang XS J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009 [TBL] [Abstract][Full Text] [Related]
6. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site. Virtanen SI; Pentikäinen OT J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004 [TBL] [Abstract][Full Text] [Related]
7. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes. Okuno T; Kato K; Terada TP; Sasai M; Chikenji G J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716 [TBL] [Abstract][Full Text] [Related]
13. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN; Abagyan RA J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363 [TBL] [Abstract][Full Text] [Related]
14. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X; Wong SE; Lightstone FC J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939 [TBL] [Abstract][Full Text] [Related]
16. Efficient molecular docking of NMR structures: application to HIV-1 protease. Huang SY; Zou X Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961 [TBL] [Abstract][Full Text] [Related]
17. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening? Grigoryan AV; Wang H; Cardozo TJ PLoS One; 2012; 7(10):e46532. PubMed ID: 23071584 [TBL] [Abstract][Full Text] [Related]
18. Molecular docking to flexible targets. Sørensen J; Demir Ö; Swift RV; Feher VA; Amaro RE Methods Mol Biol; 2015; 1215():445-69. PubMed ID: 25330975 [TBL] [Abstract][Full Text] [Related]
19. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332 [TBL] [Abstract][Full Text] [Related]