These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20000587)

  • 1. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments.
    Craig IR; Essex JW; Spiegel K
    J Chem Inf Model; 2010 Apr; 50(4):511-24. PubMed ID: 20222690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening.
    Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM
    J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
    Xia J; Hsieh JH; Hu H; Wu S; Wang XS
    J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.
    Okuno T; Kato K; Terada TP; Sasai M; Chikenji G
    J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational sampling for large-scale virtual screening: accuracy versus ensemble size.
    Griewel A; Kayser O; Schlosser J; Rarey M
    J Chem Inf Model; 2009 Oct; 49(10):2303-11. PubMed ID: 19788252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.
    Therrien E; Weill N; Tomberg A; Corbeil CR; Lee D; Moitessier N
    J Chem Inf Model; 2014 Nov; 54(11):3198-210. PubMed ID: 25280064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.
    Uehara S; Tanaka S
    J Chem Inf Model; 2017 Apr; 57(4):742-756. PubMed ID: 28388074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning.
    Ricci-Lopez J; Aguila SA; Gilson MK; Brizuela CA
    J Chem Inf Model; 2021 Nov; 61(11):5362-5376. PubMed ID: 34652141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRDOCK: an ultrafast multipurpose protein-ligand docking tool.
    Cortés Cabrera Á; Klett J; Dos Santos HG; Perona A; Gil-Redondo R; Francis SM; Priego EM; Gago F; Morreale A
    J Chem Inf Model; 2012 Aug; 52(8):2300-9. PubMed ID: 22764680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient molecular docking of NMR structures: application to HIV-1 protease.
    Huang SY; Zou X
    Protein Sci; 2007 Jan; 16(1):43-51. PubMed ID: 17123961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?
    Grigoryan AV; Wang H; Cardozo TJ
    PLoS One; 2012; 7(10):e46532. PubMed ID: 23071584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular docking to flexible targets.
    Sørensen J; Demir Ö; Swift RV; Feher VA; Amaro RE
    Methods Mol Biol; 2015; 1215():445-69. PubMed ID: 25330975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ligand docking against non-native protein conformers.
    Verdonk ML; Mortenson PN; Hall RJ; Hartshorn MJ; Murray CW
    J Chem Inf Model; 2008 Nov; 48(11):2214-25. PubMed ID: 18954138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.