These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20000595)

  • 1. Depositing ordered arrays of metal sulfide nanoparticles in nanostructures using supercritical fluid carbon dioxide.
    Wang JS; Smetana AB; Boeckl JJ; Brown GJ; Wai CM
    Langmuir; 2010 Jan; 26(2):1117-23. PubMed ID: 20000595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films.
    McLeod MC; Kitchens CL; Roberts CB
    Langmuir; 2005 Mar; 21(6):2414-8. PubMed ID: 15752033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion.
    Fernandez CA; Wai CM
    Chemistry; 2007; 13(20):5838-44. PubMed ID: 17443835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds.
    Anand M; Bell PW; Fan X; Enick RM; Roberts CB
    J Phys Chem B; 2006 Aug; 110(30):14693-701. PubMed ID: 16869575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous tuning of silver nanoparticle size in a water-in-supercritical carbon dioxide microemulsion.
    Fernandez CA; Wai CM
    Small; 2006 Nov; 2(11):1266-9. PubMed ID: 17192972
    [No Abstract]   [Full Text] [Related]  

  • 6. Supercritical fluid deposition of uniform PbS nanoparticle films for energy-transfer studies.
    Wang JS; Brown GJ; Hung WC; Wai CM
    Chemphyschem; 2012 Jun; 13(8):2068-73. PubMed ID: 22467375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions.
    Liu J; Raveendran P; Shervani Z; Ikushima Y; Hakuta Y
    Chemistry; 2005 Mar; 11(6):1854-60. PubMed ID: 15685712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt nanoparticle arrays made by templated solid-state dewetting.
    Oh YJ; Ross CA; Jung YS; Wang Y; Thompson CV
    Small; 2009 Apr; 5(7):860-5. PubMed ID: 19189331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complexes--comparison with conventional methods.
    Al-Marzouqi AH; Jobe B; Dowaidar A; Maestrelli F; Mura P
    J Pharm Biomed Anal; 2007 Jan; 43(2):566-74. PubMed ID: 17010552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and extraction of beta-D-glucose-stabilized Au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids.
    Liu J; Anand M; Roberts CB
    Langmuir; 2006 Apr; 22(9):3964-71. PubMed ID: 16618133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured microspheres produced by supercritical fluid extraction of emulsions.
    Della Porta G; Reverchon E
    Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.
    Meric P; Yu KM; Tsang SC
    Langmuir; 2004 Sep; 20(20):8537-45. PubMed ID: 15379472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence.
    Lei Y; Chim WK
    J Am Chem Soc; 2005 Feb; 127(5):1487-92. PubMed ID: 15686382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks.
    Pang J; Stuecker JN; Jiang Y; Bhakta AJ; Branson ED; Li P; Cesarano J; Sutton D; Calvert P; Brinker CJ
    Small; 2008 Jul; 4(7):982-9. PubMed ID: 18581410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous formation of nanoparticle stripe patterns through dewetting.
    Huang J; Kim F; Tao AR; Connor S; Yang P
    Nat Mater; 2005 Dec; 4(12):896-900. PubMed ID: 16284621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of nanostructured lipid carriers loaded with supercritical carbon dioxide fluid extraction of Xionggui powder].
    Chen Y; Chen F; Wei W; Zhang X; Feng Q; Jin R
    Zhongguo Zhong Yao Za Zhi; 2009 Jan; 34(2):148-51. PubMed ID: 19385172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release].
    Chen YJ; Jin RX; Zhou YQ; Zeng J; Zhang H; Feng QR
    Zhongguo Zhong Yao Za Zhi; 2006 Mar; 31(5):376-9. PubMed ID: 16711418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.