BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20000803)

  • 1. Mechanical control of ATP synthase function: activation energy difference between tight and loose binding sites.
    Beke-Somfai T; Lincoln P; Nordén B
    Biochemistry; 2010 Jan; 49(3):401-3. PubMed ID: 20000803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the gamma-epsilon complex of ATP synthase.
    Rodgers AJ; Wilce MC
    Nat Struct Biol; 2000 Nov; 7(11):1051-4. PubMed ID: 11062562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1.
    Kagawa Y; Hamamoto T
    Biochem Biophys Res Commun; 1997 Nov; 240(2):247-56. PubMed ID: 9388462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.
    Kumar A; Manimekalai MS; Balakrishna AM; Hunke C; Weigelt S; Sewald N; Grüber G
    Proteins; 2009 Jun; 75(4):807-19. PubMed ID: 19003877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transduction in the F1 motor of ATP synthase.
    Wang H; Oster G
    Nature; 1998 Nov; 396(6708):279-82. PubMed ID: 9834036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations.
    Okazaki K; Takada S
    Structure; 2011 Apr; 19(4):588-98. PubMed ID: 21481781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution.
    Kumar A; Manimekalai MS; Balakrishna AM; Jeyakanthan J; Grüber G
    J Mol Biol; 2010 Feb; 396(2):301-20. PubMed ID: 19944110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A(1)A(0) ATP synthase.
    Manimekalai MS; Kumar A; Balakrishna AM; Grüber G
    J Struct Biol; 2009 Apr; 166(1):38-45. PubMed ID: 19138746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intersubunit rotation in active F-ATPase.
    Sabbert D; Engelbrecht S; Junge W
    Nature; 1996 Jun; 381(6583):623-5. PubMed ID: 8637601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.
    Abrahams JP; Leslie AG; Lutter R; Walker JE
    Nature; 1994 Aug; 370(6491):621-8. PubMed ID: 8065448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase.
    Gao YQ; Yang W; Karplus M
    Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
    Gibbons C; Montgomery MG; Leslie AG; Walker JE
    Nat Struct Biol; 2000 Nov; 7(11):1055-61. PubMed ID: 11062563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase.
    Manimekalai MS; Kumar A; Jeyakanthan J; Grüber G
    J Mol Biol; 2011 May; 408(4):736-54. PubMed ID: 21396943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk.
    Maegawa Y; Morita H; Iyaguchi D; Yao M; Watanabe N; Tanaka I
    Acta Crystallogr D Biol Crystallogr; 2006 May; 62(Pt 5):483-8. PubMed ID: 16627940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary movements within the ATP synthase do not constitute an obligatory element of the catalytic mechanism.
    Berden JA
    IUBMB Life; 2003 Aug; 55(8):473-81. PubMed ID: 14609203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of nucleotide binding sites of the isolated H(+)-ATPase from spinach chloroplasts, CF(0)F(1).
    Creczynski-Pasa TB; Possmayer FE; Scofano HM; Gräber P
    Arch Biochem Biophys; 2000 Apr; 376(1):141-8. PubMed ID: 10729199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation.
    Feniouk BA; Junge W
    FEBS Lett; 2005 Sep; 579(23):5114-8. PubMed ID: 16154570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.