BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20000804)

  • 1. Evaluation and optimization of a force field for crystalline forms of mannitol and sorbitol.
    de Waard H; Amani A; Kendrick J; Hinrichs WL; Frijlink HW; Anwar J
    J Phys Chem B; 2010 Jan; 114(1):429-36. PubMed ID: 20000804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure.
    Tuble SC; Anwar J; Gale JD
    J Am Chem Soc; 2004 Jan; 126(1):396-405. PubMed ID: 14709107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?
    Villa A; Fan H; Wassenaar T; Mark AE
    J Phys Chem B; 2007 May; 111(21):6015-25. PubMed ID: 17489626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.
    de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N
    Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining the description of peptide backbone conformations improves protein simulations using the GROMOS 53A6 force field.
    Cao Z; Lin Z; Wang J; Liu H
    J Comput Chem; 2009 Mar; 30(4):645-60. PubMed ID: 18780355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation.
    Katagiri D; Fuji H; Neya S; Hoshino T
    J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular mechanics force field for lignin.
    Petridis L; Smith JC
    J Comput Chem; 2009 Feb; 30(3):457-67. PubMed ID: 18677707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers.
    Hower JC; He Y; Bernards MT; Jiang S
    J Chem Phys; 2006 Dec; 125(21):214704. PubMed ID: 17166037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective force field for liquid hydrogen fluoride from ab initio molecular dynamics simulation using the force-matching method.
    Izvekov S; Voth GA
    J Phys Chem B; 2005 Apr; 109(14):6573-86. PubMed ID: 16851738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarizable and nonpolarizable force fields for alkyl nitrates.
    Borodin O; Smith GD; Sewell TD; Bedrov D
    J Phys Chem B; 2008 Jan; 112(3):734-42. PubMed ID: 18085767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force field parameters for the simulation of modified histone tails.
    Grauffel C; Stote RH; Dejaegere A
    J Comput Chem; 2010 Oct; 31(13):2434-51. PubMed ID: 20652987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics.
    Doshi U; Hamelberg D
    J Phys Chem B; 2009 Dec; 113(52):16590-5. PubMed ID: 19938868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of crystalline alkylthiophene oligomers and polymers.
    Moreno M; Casalegno M; Raos G; Meille SV; Po R
    J Phys Chem B; 2010 Feb; 114(4):1591-602. PubMed ID: 20058895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular mechanics force field for biologically important sterols.
    Cournia Z; Smith JC; Ullmann GM
    J Comput Chem; 2005 Oct; 26(13):1383-99. PubMed ID: 16028234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A force-field description of short-range repulsions for high density alkane molecular dynamics simulations.
    Hayes JM; Greer JC; Morton-Blake DA
    J Comput Chem; 2004 Dec; 25(16):1953-66. PubMed ID: 15470758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the chromophore binding site of Deinococcus radiodurans bacteriophytochrome using new force field parameters for the phytochromobilin chromophore.
    Kaminski S; Daminelli G; Mroginski MA
    J Phys Chem B; 2009 Jan; 113(4):945-58. PubMed ID: 19123828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.