BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20000922)

  • 21. A biologically motivated neural network for phase extraction from complex sounds.
    Borst M; Langner G; Palm G
    Biol Cybern; 2004 Feb; 90(2):98-104. PubMed ID: 14999476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced sound localization.
    Mungamuru B; Aarabi P
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1526-40. PubMed ID: 15484922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic source speaker selection for voice conversion.
    Turk O; Arslan LM
    J Acoust Soc Am; 2009 Jan; 125(1):480-91. PubMed ID: 19173433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calibration of a Hall effect displacement measurement system for complex motion analysis using a neural network.
    Northey GW; Oliver ML; Rittenhouse DM
    J Biomech; 2006; 39(10):1943-7. PubMed ID: 15998522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders.
    Folegot T; Martinelli G; Guerrini P; Stevenson JM
    J Acoust Soc Am; 2008 Nov; 124(5):2852-60. PubMed ID: 19045773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis.
    Hallez H; Vanrumste B; Van Hese P; Delputte S; Lemahieu I
    Phys Med Biol; 2008 Apr; 53(7):1877-94. PubMed ID: 18364544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of acoustic emissions for underwater data transmission on the behaviour of harbour porpoises (Phocoena phocoena) in a floating pen.
    Kastelein RA; Verboom WC; Muijsers M; Jennings NV; van der Heul S
    Mar Environ Res; 2005 May; 59(4):287-307. PubMed ID: 15589983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for reconstructing acoustic quantities based on acoustic pressure measurements.
    Wu SF
    J Acoust Soc Am; 2008 Nov; 124(5):2680-97. PubMed ID: 19045753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-microphone system for real-time directional analysis: toward a device for environmental monitoring in deaf-blind.
    Borg E; Neovius L; Kjellander M
    J Rehabil Res Dev; 2001; 38(2):265-72. PubMed ID: 11392659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncertainties caused by source directivity in room-acoustic investigations.
    San Martín R; Arana M
    J Acoust Soc Am; 2008 Jun; 123(6):EL133-8. PubMed ID: 18537299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of acoustic navigation signals for simultaneous localization and sound-speed estimation.
    Skarsoulis EK; Piperakis GS
    J Acoust Soc Am; 2009 Mar; 125(3):1384-93. PubMed ID: 19275295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of acoustic feature parameters using myoelectric signals.
    Lee KS
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1587-95. PubMed ID: 20172775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modal processing for acoustic communications in shallow water experiment.
    Morozov AK; Preisig JC; Papp J
    J Acoust Soc Am; 2008 Sep; 124(3):EL177-81. PubMed ID: 19045562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low probability of detection underwater acoustic communications using direct-sequence spread spectrum.
    Yang TC; Yang WB
    J Acoust Soc Am; 2008 Dec; 124(6):3632-47. PubMed ID: 19206792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating fish orientation from broadband, limited-angle, multiview, acoustic reflections.
    Jaffe JS; Roberts PL
    J Acoust Soc Am; 2011 Feb; 129(2):670-80. PubMed ID: 21361426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of sound source location and direction on acoustic parameters in Japanese churches.
    Soeta Y; Ito K; Shimokura R; Sato S; Ohsawa T; Ando Y
    J Acoust Soc Am; 2012 Feb; 131(2):1206-20. PubMed ID: 22352495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Multiple Sound Source Localization by Proposed T-Shaped Circular Distributed Microphone Arrays in Combination with GEVD and Adaptive GCC-PHAT/ML Algorithms.
    Dehghan Firoozabadi A; Irarrazaval P; Adasme P; Zabala-Blanco D; Játiva PP; Azurdia-Meza C
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bayesian direction-of-arrival model for an undetermined number of sources using a two-microphone array.
    Escolano J; Xiang N; Perez-Lorenzo JM; Cobos M; Lopez JJ
    J Acoust Soc Am; 2014 Feb; 135(2):742-53. PubMed ID: 25234883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An artificial neural network for sound localization using binaural cues.
    Datum MS; Palmieri F; Moiseff A
    J Acoust Soc Am; 1996 Jul; 100(1):372-83. PubMed ID: 8675834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound source direction-of-arrival estimation method for microphone array based on ultra-weak fiber Bragg grating distributed acoustic sensor.
    Luo Z; Lu B; Huang J; Ran C; He H
    Opt Express; 2023 Sep; 31(19):31342-31353. PubMed ID: 37710656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.