These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20000925)

  • 1. Comparison of in-situ calibration methods for quantifying input to the middle ear.
    Lewis JD; McCreery RW; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Dec; 126(6):3114-24. PubMed ID: 20000925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further assessment of forward pressure level for in situ calibration.
    Scheperle RA; Goodman SS; Neely ST
    J Acoust Soc Am; 2011 Dec; 130(6):3882-92. PubMed ID: 22225044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in situ calibration for hearing thresholds.
    Withnell RH; Jeng PS; Waldvogel K; Morgenstein K; Allen JB
    J Acoust Soc Am; 2009 Mar; 125(3):1605-11. PubMed ID: 19275318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of standing-wave errors in real-ear sound-level measurements.
    Richmond SA; Kopun JG; Neely ST; Tan H; Gorga MP
    J Acoust Soc Am; 2011 May; 129(5):3134-40. PubMed ID: 21568416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability.
    Scheperle RA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2008 Jul; 124(1):288-300. PubMed ID: 18646977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of nine methods to estimate ear-canal stimulus levels.
    Souza NN; Dhar S; Neely ST; Siegel JH
    J Acoust Soc Am; 2014 Oct; 136(4):1768-87. PubMed ID: 25324079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clinical utility of expressing hearing thresholds in terms of the forward-going sound pressure wave.
    Withnell RH; Jeng PS; Parent P; Levitt H
    Int J Audiol; 2014 Aug; 53(8):522-30. PubMed ID: 24825368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of calibration method on distortion-product otoacoustic emission measurements: II. threshold prediction.
    Rogers AR; Burke SR; Kopun JG; Tan H; Neely ST; Gorga MP
    Ear Hear; 2010 Aug; 31(4):546-54. PubMed ID: 20458245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.
    McCreery RW; Pittman A; Lewis J; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Jul; 126(1):15-24. PubMed ID: 19603858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the acoustic input impedance of the ear.
    Withnell RH; Gowdy LE
    J Assoc Res Otolaryngol; 2013 Oct; 14(5):611-22. PubMed ID: 23917695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of acoustic impedance and reflectance in the human ear canal.
    Voss SE; Allen JB
    J Acoust Soc Am; 1994 Jan; 95(1):372-84. PubMed ID: 8120248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specification of absorbed-sound power in the ear canal: application to suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Schairer KS
    J Acoust Soc Am; 2011 Feb; 129(2):779-91. PubMed ID: 21361437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causality-constrained measurements of aural acoustic reflectance and reflection functions.
    Keefe DH
    J Acoust Soc Am; 2020 Jan; 147(1):300. PubMed ID: 32006959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pure-tone sensitivity and ear canal pressure at threshold in children and adults.
    Yoneshige Y; Elliott LL
    J Acoust Soc Am; 1981 Nov; 70(5):1272-6. PubMed ID: 7334168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of ear-canal-reflectance measurement methods in an ear simulator.
    Nørgaard KR; Charaziak KK; Shera CA
    J Acoust Soc Am; 2019 Aug; 146(2):1350. PubMed ID: 31472530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.