These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 20000945)

  • 1. Pinna-rim skin folds narrow the sonar beam in the lesser false vampire bat (Megaderma spasma).
    Wang X; Müller R
    J Acoust Soc Am; 2009 Dec; 126(6):3311-8. PubMed ID: 20000945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical analysis of biosonar beamforming mechanisms and strategies in bats.
    Müller R
    J Acoust Soc Am; 2010 Sep; 128(3):1414-25. PubMed ID: 20815475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model predicts bat pinna ridges focus high frequencies to form narrow sensitivity beams.
    Kuc R
    J Acoust Soc Am; 2009 May; 125(5):3454-9. PubMed ID: 19425684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.
    Kuc R
    J Acoust Soc Am; 2010 Nov; 128(5):3190-9. PubMed ID: 21110614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis.
    Ma J; Müller R
    Bioinspir Biomim; 2011 Jun; 6(2):026008. PubMed ID: 21555829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of preceding sonar emission on temporal integration in the bat, Megaderma lyra.
    Weissenbacher P; Wiegrebe L; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):147-55. PubMed ID: 11919696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special acoustical role of pinna simplifying spatial target localization by the brown long-eared bat Plecotus auritus.
    Ma X; Zhang S; Dong Z; Lu H; Li J; Zhou W
    Phys Rev E; 2020 Oct; 102(4-1):040401. PubMed ID: 33212656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.
    Caspers P; Müller R
    Bioinspir Biomim; 2018 Jun; 13(4):046011. PubMed ID: 29794330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseshoe bats and Old World leaf-nosed bats have two discrete types of pinna motions.
    Yin X; Qiu P; Yang L; Müller R
    J Acoust Soc Am; 2017 May; 141(5):3011. PubMed ID: 28599557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the role of beamwidth in biological and engineered sonar.
    Todd BD; Müller R
    Bioinspir Biomim; 2017 Dec; 13(1):016014. PubMed ID: 29130894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy analysis of frequency and shape change in horseshoe bat biosonar.
    Gupta AK; Webster D; Müller R
    Phys Rev E; 2018 Jun; 97(6-1):062402. PubMed ID: 30011434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A beam based method for target localization: inspiration from bats' directivity and binaural reception for ultrasonic sonar.
    Guarato F; Windmill J; Gachagan A
    J Acoust Soc Am; 2013 Jun; 133(6):4077-86. PubMed ID: 23742360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orienting responses and vocalizations produced by microstimulation in the superior colliculus of the echolocating bat, Eptesicus fuscus.
    Valentine DE; Sinha SR; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):89-108. PubMed ID: 11919691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the diversity in bat biosonar beampatterns with spherical harmonics power spectra.
    Motamedi M; Müller R
    J Acoust Soc Am; 2014 Jun; 135(6):3613-9. PubMed ID: 24916408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bat pinna on sensing using acoustic finite difference time domain simulation.
    Teshima Y; Nomura T; Kato M; Tsuchiya T; Shimizu G; Hiryu S
    J Acoust Soc Am; 2022 Jun; 151(6):4039. PubMed ID: 35778224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.
    Zhuang Q; Müller R
    Phys Rev Lett; 2006 Nov; 97(21):218701. PubMed ID: 17155779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features in geometric receiver shapes modelling bat-like directivity patterns.
    Guarato F; Andrews H; Windmill JF; Jackson J; Pierce G; Gachagan A
    Bioinspir Biomim; 2015 Sep; 10(5):056007. PubMed ID: 26334174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus).
    Moore PW; Dankiewicz LA; Houser DS
    J Acoust Soc Am; 2008 Nov; 124(5):3324-32. PubMed ID: 19045815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-variant spectral peak and notch detection in echolocation-call sequences in bats.
    Genzel D; Wiegrebe L
    J Exp Biol; 2008 Jan; 211(Pt 1):9-14. PubMed ID: 18083726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial ears for a biomimetic sonarhead: from multiple reflectors to surfaces.
    Carmena JM; Kämpchen N; Kim D; Hallam JC
    Artif Life; 2001; 7(2):147-69. PubMed ID: 11580878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.