These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20001051)

  • 21. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
    Diao J; Srivastava D; Menon M
    J Chem Phys; 2008 Apr; 128(16):164708. PubMed ID: 18447480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries.
    Huang H; Zhang W; Li M; Gan Y; Chen J; Kuang Y
    J Colloid Interface Sci; 2005 Apr; 284(2):593-9. PubMed ID: 15780298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal annealing of SiC nanoparticles induces SWNT nucleation: evidence for a catalyst-independent VSS mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    Phys Chem Chem Phys; 2011 Sep; 13(34):15673-80. PubMed ID: 21789319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxide-driven carbon nanotube growth in supported catalyst CVD.
    Rümmeli MH; Schäffel F; Kramberger C; Gemming T; Bachmatiuk A; Kalenczuk RJ; Rellinghaus B; Büchner B; Pichler T
    J Am Chem Soc; 2007 Dec; 129(51):15772-3. PubMed ID: 18052382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-area synthesis of carbon nanofibres at room temperature.
    Boskovic BO; Stolojan V; Khan RU; Haq S; Silva SR
    Nat Mater; 2002 Nov; 1(3):165-8. PubMed ID: 12618804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays.
    Eres G; Kinkhabwala AA; Cui H; Geohegan DB; Puretzky AA; Lowndes DH
    J Phys Chem B; 2005 Sep; 109(35):16684-94. PubMed ID: 16853123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay of wetting and elasticity in the nucleation of carbon nanotubes.
    Schebarchov D; Hendy SC; Ertekin E; Grossman JC
    Phys Rev Lett; 2011 Oct; 107(18):185503. PubMed ID: 22107643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst.
    Hart AJ; Slocum AH
    J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle-wire-tube mechanism for carbon nanotube evolution.
    Du G; Feng S; Zhao J; Song C; Bai S; Zhu Z
    J Am Chem Soc; 2006 Dec; 128(48):15405-14. PubMed ID: 17132007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor.
    Tian Y; Hu Z; Yang Y; Wang X; Chen X; Xu H; Wu Q; Ji W; Chen Y
    J Am Chem Soc; 2004 Feb; 126(4):1180-3. PubMed ID: 14746488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalyst volume to surface area constraints for nucleating carbon nanotubes.
    Rümmeli MH; Kramberger C; Löffler M; Jost O; Bystrzejewski M; Grüneis A; Gemming T; Pompe W; Büchner B; Pichler T
    J Phys Chem B; 2007 Jul; 111(28):8234-41. PubMed ID: 17580861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abrasion as a catalyst deposition technique for carbon nanotube growth.
    Alvarez NT; Pint CL; Hauge RH; Tour JM
    J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.
    Pumera M
    Langmuir; 2007 May; 23(11):6453-8. PubMed ID: 17455966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytically assisted tip growth mechanism for single-wall carbon nanotubes.
    Charlier JC; Amara H; Lambin P
    ACS Nano; 2007 Oct; 1(3):202-7. PubMed ID: 19206650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Argon nucleation: bringing together theory, simulations, and experiment.
    Kalikmanov VI; Wölk J; Kraska T
    J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.